env.py•4.62 kB
"""
Alembic environment configuration for Maverick-MCP.
This file configures Alembic to work with the existing Django database,
managing only tables with the mcp_ prefix.
"""
import os
import sys
from logging.config import fileConfig
from pathlib import Path
from sqlalchemy import engine_from_config, pool
from alembic import context
# Add project root to Python path
sys.path.insert(0, str(Path(__file__).parent.parent))
# Import models
from maverick_mcp.data.models import Base as DataBase
# Use data models metadata (auth removed for personal version)
combined_metadata = DataBase.metadata
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
config = context.config
# Interpret the config file for Python logging.
# This line sets up loggers basically.
if config.config_file_name is not None:
fileConfig(config.config_file_name)
# Get database URL from environment or use default
DATABASE_URL = os.getenv(
"DATABASE_URL",
os.getenv("POSTGRES_URL", "postgresql://localhost/local_production_snapshot"),
)
# Override sqlalchemy.url in alembic.ini
config.set_main_option("sqlalchemy.url", DATABASE_URL)
# add your model's MetaData object here
# for 'autogenerate' support
# Use the combined metadata from both Base objects
target_metadata = combined_metadata
# other values from the config, defined by the needs of env.py,
# can be acquired:
# my_important_option = config.get_main_option("my_important_option")
# ... etc.
def include_object(object, name, type_, reflected, compare_to):
"""
Include only MCP-prefixed tables and stock-related tables.
This ensures Alembic only manages tables that belong to Maverick-MCP,
not Django tables.
"""
if type_ == "table":
# Include MCP tables and stock tables
return (
name.startswith("mcp_")
or name.startswith("stocks_")
or name
in ["maverick_stocks", "maverick_bear_stocks", "supply_demand_breakouts"]
)
elif type_ in [
"index",
"unique_constraint",
"foreign_key_constraint",
"check_constraint",
]:
# Include indexes and constraints for our tables
if hasattr(object, "table") and object.table is not None:
table_name = object.table.name
return (
table_name.startswith("mcp_")
or table_name.startswith("stocks_")
or table_name
in [
"maverick_stocks",
"maverick_bear_stocks",
"supply_demand_breakouts",
]
)
# For reflected objects, check the table name in the name
return any(
name.startswith(prefix)
for prefix in [
"idx_mcp_",
"uq_mcp_",
"fk_mcp_",
"ck_mcp_",
"idx_stocks_",
"uq_stocks_",
"fk_stocks_",
"ck_stocks_",
"ck_pricecache_",
"ck_maverick_",
"ck_supply_demand_",
]
)
return True
def run_migrations_offline() -> None:
"""Run migrations in 'offline' mode.
This configures the context with just a URL
and not an Engine, though an Engine is acceptable
here as well. By skipping the Engine creation
we don't even need a DBAPI to be available.
Calls to context.execute() here emit the given string to the
script output.
"""
url = config.get_main_option("sqlalchemy.url")
context.configure(
url=url,
target_metadata=target_metadata,
literal_binds=True,
dialect_opts={"paramstyle": "named"},
include_object=include_object,
)
with context.begin_transaction():
context.run_migrations()
def run_migrations_online() -> None:
"""Run migrations in 'online' mode.
In this scenario we need to create an Engine
and associate a connection with the context.
"""
connectable = engine_from_config(
config.get_section(config.config_ini_section, {}),
prefix="sqlalchemy.",
poolclass=pool.NullPool,
)
with connectable.connect() as connection:
context.configure(
connection=connection,
target_metadata=target_metadata,
include_object=include_object,
)
with context.begin_transaction():
context.run_migrations()
if context.is_offline_mode():
run_migrations_offline()
else:
run_migrations_online()