Skip to main content
Glama

Rockfish MCP Server

by wolfdancer
README.md6.49 kB
# Rockfish MCP Server A Model Context Protocol (MCP) server that provides access to the Rockfish API, enabling AI assistants to interact with Rockfish's machine learning platform. ## Features This MCP server provides tools for the following Rockfish resources: - **Databases**: Create, list, update, and delete databases - **Worker Sets**: Manage worker sets for distributed processing - **Workflows**: Create and manage ML workflows - **Models**: Upload, list, and manage ML models - **Projects**: Organize and manage projects - **Datasets**: Create and manage datasets ## Installation 1. Clone the repository: ```bash git clone https://github.com/yourusername/rockfish-mcp.git cd rockfish-mcp ``` 2. Install dependencies: ```bash pip install -e . ``` 3. Set up environment variables: ```bash cp .env.example .env # Edit .env and add your Rockfish API key ``` ## Configuration Create a `.env` file with your Rockfish API credentials: ```env ROCKFISH_API_KEY=your_api_key_here ROCKFISH_BASE_URL=https://api.rockfish.ai ``` ## Usage Run the MCP server: ```bash python -m rockfish_mcp.server ``` Or use the console script: ```bash rockfish-mcp ``` ## Claude Desktop Setup To use this MCP server with Claude Desktop: 1. **Complete the installation steps above** (clone, install dependencies, set up .env file). Note that you do not need to start the MCP server manually for using it with Claude Desktop. Claude Desktop will automatically start it for you when you follow the steps below. 2. **Find your Claude Desktop configuration directory:** - **macOS**: `~/Library/Application Support/Claude/` - **Windows**: `%APPDATA%\Claude\` - **Linux**: `~/.config/Claude/` 3. **Create or edit the `claude_desktop_config.json` file** in that directory: ```json { "mcpServers": { "rockfish": { "command": "/path/to/your/project/.venv/bin/python", "args": ["-m", "rockfish_mcp.server"], "env": { "ROCKFISH_API_KEY": "your_api_key_here", "ROCKFISH_BASE_URL": "https://api.rockfish.ai" } } } } ``` 4. **Update the paths in the configuration:** - Replace `/path/to/your/project/.venv/bin/python` with the actual path to your Python executable - Replace `your_api_key_here` with your actual Rockfish API key - Adjust `ROCKFISH_BASE_URL` if you're using a different endpoint 5. **Get the correct Python path** by running this command in your project directory: ```bash which python ``` 6. **Example configuration** (replace with your actual paths and API key): ```json { "mcpServers": { "rockfish": { "command": "/Users/shane/code/rockfish-mcp/.venv/bin/python", "args": ["-m", "rockfish_mcp.server"], "env": { "ROCKFISH_API_KEY": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...", "ROCKFISH_BASE_URL": "https://sunset-beach.rockfish.ai" } } } } ``` 7. **Restart Claude Desktop** after making these changes 8. **Test the connection** by asking Claude to list your Rockfish databases or projects ## MCP Inspector Setup The MCP Inspector is a debugging tool that helps you test your MCP server before connecting it to Claude Desktop. ### Installation ```bash npx @modelcontextprotocol/inspector ``` ### Usage 1. **Start the MCP Inspector:** ```bash npx @modelcontextprotocol/inspector /Users/shane/code/rockfish-mcp/.venv/bin/python -m rockfish_mcp.server ``` 2. **Or create a test script** for easier repeated testing: ```bash #!/bin/bash # test-mcp.sh export ROCKFISH_API_KEY="your_api_key_here" export ROCKFISH_BASE_URL="https://sunset-beach.rockfish.ai" npx @modelcontextprotocol/inspector /Users/shane/code/rockfish-mcp/.venv/bin/python -m rockfish_mcp.server ``` Make it executable and run: ```bash chmod +x test-mcp.sh ./test-mcp.sh ``` 3. **The Inspector will open in your browser** and show: - Available tools (should show all 32 Rockfish tools) - Tool schemas and descriptions - Interactive tool testing interface 4. **Test your tools** by: - Selecting a tool from the list (e.g., `list_databases`) - Filling in required parameters - Clicking "Call Tool" to test the API call - Viewing the response ### Useful Tools to Test First - **`list_databases`** - Simple GET request with no parameters - **`list_projects`** - Another simple list operation - **`get_database`** - Test with a database ID from the list - **`create_database`** - Test creating a new resource ### Troubleshooting - **MCP server not appearing**: Check that the Python path is correct and the virtual environment is activated - **Authentication errors**: Verify your `ROCKFISH_API_KEY` is correct - **Connection issues**: Confirm your `ROCKFISH_BASE_URL` is accessible - **Path issues on Windows**: Use forward slashes or escaped backslashes in JSON paths ## Available Tools ### Database Tools - `list_databases`: List all databases - `create_database`: Create a new database - `get_database`: Get a specific database by ID - `update_database`: Update a database - `delete_database`: Delete a database ### Worker Set Tools - `list_worker_sets`: List all worker sets - `create_worker_set`: Create a new worker set - `get_worker_set`: Get a specific worker set by ID - `delete_worker_set`: Delete a worker set - `get_worker_set_actions`: List actions that the specific worker set can run - `list_available_actions`: List all actions available to the user (across all worker sets) ### Workflow Tools - `list_workflows`: List all workflows - `create_workflow`: Create and run a new workflow - `get_workflow`: Get a specific workflow by ID - `update_workflow`: Update a workflow ### Model Tools - `list_models`: List all models - `upload_model`: Upload a new model - `get_model`: Get a specific model by ID - `delete_model`: Delete a model ### Project Tools - `get_active_project`: Get the currently active project - `list_projects`: List all projects - `create_project`: Create a new project - `get_project`: Get a specific project by ID - `update_project`: Update a project ### Dataset Tools - `list_datasets`: List all datasets - `create_dataset`: Create a new dataset - `get_dataset`: Get a specific dataset by ID - `update_dataset`: Update a dataset - `delete_dataset`: Delete a dataset - `get_dataset_schema`: Get dataset metadata present in its schema ## Development To contribute to this project: 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests if applicable 5. Submit a pull request ## License MIT License

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/wolfdancer/rockfish-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server