Skip to main content
Glama

search_long_term_memories

Retrieve relevant long-term memories from conversation history to maintain context and enable serendipitous recall.

Instructions

Search and activate relevant long-term memories based on current conversation context. Returns activated memories (whose triggers evaluated to true) and random memories for serendipity.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
messagesYesRecent conversation messages
conversation_idYesCurrent conversation ID
participantsNoOptional participants information

Implementation Reference

  • The handler function that implements the core logic of the 'search_long_term_memories' tool. It processes input arguments to create context and invokes the LongTermMemoryManager to search and activate memories.
    handler: async (args) => { try { const context = { messages: args.messages, conversation_id: args.conversation_id, participants: args.participants || {} }; const results = await memoryManager.searchAndActivateMemories(context); const formatMemory = (mem) => ({ name: mem.name, prompt: mem.prompt, createdAt: mem.createdAt.toISOString(), updatedAt: mem.updatedAt?.toISOString() }); return { activated: results.activated.map(formatMemory), random: results.random.map(formatMemory), totalMemories: memoryManager.getMemories().length, formattedText: memoryManager.formatActivatedMemories(results.activated, results.random) }; } catch (error) { return { error: error.message }; }
  • Zod input schema defining the expected parameters for the search_long_term_memories tool: recent messages, conversation ID, and optional participants.
    inputSchema: z.object({ messages: z.array(z.object({ role: z.enum(['user', 'assistant', 'system']), content: z.string() })).describe('Recent conversation messages'), conversation_id: z.string().describe('Current conversation ID'), participants: z.object({}).passthrough().optional().describe('Optional participants information') }),
  • The complete tool definition object for 'search_long_term_memories' within the createLongTermTools function, which registers the tool by including it in the returned array of MCP tools.
    { name: 'search_long_term_memories', description: 'Search and activate relevant long-term memories based on current conversation context. Returns activated memories (whose triggers evaluated to true) and random memories for serendipity.', inputSchema: z.object({ messages: z.array(z.object({ role: z.enum(['user', 'assistant', 'system']), content: z.string() })).describe('Recent conversation messages'), conversation_id: z.string().describe('Current conversation ID'), participants: z.object({}).passthrough().optional().describe('Optional participants information') }), handler: async (args) => { try { const context = { messages: args.messages, conversation_id: args.conversation_id, participants: args.participants || {} }; const results = await memoryManager.searchAndActivateMemories(context); const formatMemory = (mem) => ({ name: mem.name, prompt: mem.prompt, createdAt: mem.createdAt.toISOString(), updatedAt: mem.updatedAt?.toISOString() }); return { activated: results.activated.map(formatMemory), random: results.random.map(formatMemory), totalMemories: memoryManager.getMemories().length, formattedText: memoryManager.formatActivatedMemories(results.activated, results.random) }; } catch (error) { return { error: error.message }; } } },

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/win10ogod/memory-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server