# A2AMCP SDK Design Proposal
## Overview
The A2AMCP SDK would provide high-level abstractions for both orchestrators and agents, making it dramatically easier to build multi-agent systems.
## SDK Components
### 1. Python SDK (for Orchestrators)
```python
from a2amcp import A2AMCPClient, Agent, Project, TaskPromptBuilder
# Initialize client
client = A2AMCPClient("localhost:5000")
# Create project context
project = Project("ecommerce-v2")
# High-level agent spawning
async def spawn_agent(task):
agent = Agent(
project=project,
task_id=task['id'],
branch=task['branch'],
description=task['description']
)
# SDK generates optimal prompt with MCP instructions
prompt = TaskPromptBuilder()\
.with_task(task)\
.with_dependencies(task.get('depends_on', []))\
.with_shared_interfaces(['User', 'Product'])\
.with_coordination_rules()\
.build()
# Spawn with monitoring
session = await agent.spawn(prompt)
# SDK provides event handlers
@agent.on('todo_completed')
def on_progress(todo):
print(f"β {agent.session_name} completed: {todo['text']}")
@agent.on('interface_registered')
def on_interface(interface):
print(f"π New interface available: {interface['name']}")
return agent
# Monitor all agents
async def monitor_project():
async with project.monitor() as monitor:
async for event in monitor.events():
if event.type == 'conflict':
print(f"β οΈ Conflict: {event.agents} on {event.file}")
elif event.type == 'query_timeout':
print(f"β±οΈ No response: {event.from_agent} β {event.to_agent}")
```
### 2. JavaScript/TypeScript SDK (for Orchestrators)
```typescript
import { A2AMCPClient, Project, AgentBuilder } from '@a2amcp/sdk';
const client = new A2AMCPClient('localhost:5000');
const project = new Project(client, 'ecommerce-v2');
// Typed agent creation
const agent = new AgentBuilder(project)
.withTask({
id: '001',
branch: 'feature/auth',
description: 'Build authentication'
})
.withDependencies(['database-setup'])
.withSharedInterfaces(['User', 'AuthToken'])
.build();
// Spawn with auto-retry and monitoring
await agent.spawn({
retries: 3,
onProgress: (todo) => console.log(`β ${todo.text}`),
onConflict: async (conflict) => {
// SDK provides conflict resolution helpers
await conflict.negotiate({
strategy: 'wait',
maxWait: 60
});
}
});
// High-level queries
const userInterface = await project.interfaces.get('User');
const authAgent = await project.agents.find('task-auth-001');
const response = await authAgent.query({
type: 'api',
question: 'What endpoints are available?',
timeout: 30
});
```
### 3. Agent Helper Library (Injected into Agent Context)
```python
# This would be available to agents through the prompt
from a2amcp_agent import A2AMCPAgent, coordinate, shared, todo
# Auto-registration and lifecycle management
agent = A2AMCPAgent.current() # Auto-detects from environment
# Decorators for common patterns
@todo("Implement user authentication", priority=1)
async def implement_auth():
# SDK handles todo updates automatically
user_model = await agent.interfaces.require('User')
# High-level file coordination
async with coordinate.file('src/auth/login.ts') as file:
# File automatically locked
file.write(generate_login_code(user_model))
# File automatically released
# Share results
await agent.interfaces.register('LoginResponse', {
'token': 'string',
'user': 'User',
'expiresIn': 'number'
})
# Simplified communication
@agent.handles('api_query')
async def handle_api_query(query):
if 'login' in query.content:
return {
'endpoint': '/api/auth/login',
'method': 'POST',
'expects': {'email': 'string', 'password': 'string'}
}
# Auto-heartbeat and cleanup handled by SDK
```
### 4. CLI Tools
```bash
# Monitor agents
a2amcp monitor --project ecommerce-v2
# Debug communication
a2amcp trace --from task-001 --to task-002
# Analyze performance
a2amcp stats --project ecommerce-v2
βββββββββββββββ¬βββββββββββ¬ββββββββββββ¬βββββββββββ
β Agent β Messages β Queries β Conflictsβ
βββββββββββββββΌβββββββββββΌββββββββββββΌβββββββββββ€
β task-001 β 45 β 12 (100%) β 2 β
β task-002 β 38 β 8 (87.5%) β 0 β
βββββββββββββββ΄βββββββββββ΄ββββββββββββ΄βββββββββββ
# Replay conversations
a2amcp replay --session task-001 --with task-002
```
## Key SDK Features
### 1. **Automatic Lifecycle Management**
```python
# Without SDK: Manual everything
register_agent(...)
try:
while working:
heartbeat(...)
messages = check_messages(...)
# Handle each message type...
finally:
unregister_agent(...)
# With SDK: Automatic
async with A2AMCPAgent() as agent:
# Heartbeat automatic
# Messages handled by decorators
# Cleanup automatic
```
### 2. **Conflict Resolution Strategies**
```python
# SDK provides built-in strategies
await agent.files.acquire('src/models/user.ts',
strategy='queue', # Wait in line
timeout=300,
on_conflict=lambda lock: agent.query(
lock.owner,
'status',
f'When will {lock.file} be available?'
)
)
```
### 3. **Transaction-Like Operations**
```python
# Coordinate multiple file changes atomically
async with agent.transaction() as tx:
await tx.lock_files([
'src/models/user.ts',
'src/types/index.ts',
'src/api/users.ts'
])
# All files locked or none
# Auto-rollback on error
```
### 4. **Event Streaming**
```python
# Real-time event processing
async for event in project.events():
match event:
case TodoCompleted(agent, todo):
update_dashboard(agent, todo)
case FileConflict(file, agents):
alert_orchestrator(file, agents)
case InterfaceShared(name, definition):
update_type_registry(name, definition)
```
### 5. **Intelligent Prompt Generation**
```python
# SDK generates optimal prompts based on:
prompt = PromptBuilder()\
.analyze_dependencies(task)\
.detect_shared_files()\
.include_relevant_interfaces()\
.add_coordination_rules()\
.add_error_recovery()\
.build()
# Produces a perfectly structured prompt with:
# - Registration instructions
# - Heartbeat reminders
# - Relevant context
# - Error handling
# - Communication patterns
```
## SDK Benefits
### For Orchestrator Developers:
1. **10x Faster Integration**: Hours to minutes
2. **Built-in Best Practices**: No need to relearn patterns
3. **Type Safety**: Full IDE support
4. **Monitoring Tools**: Real-time visibility
### For Agent Prompt Engineers:
1. **Consistent Instructions**: SDK generates optimal prompts
2. **Error Recovery**: Built-in retry and fallback logic
3. **Context Awareness**: Automatically includes relevant interfaces
4. **Simplified Patterns**: Decorators and context managers
### For System Operators:
1. **CLI Tools**: Monitor and debug without coding
2. **Performance Metrics**: Built-in instrumentation
3. **Health Checks**: Automatic anomaly detection
4. **Replay Capability**: Debug production issues
## Implementation Priorities
### Phase 1: Core Python SDK
- Basic client and agent classes
- Lifecycle management
- Simple prompt builder
- Essential patterns
### Phase 2: JavaScript/TypeScript SDK
- Port Python functionality
- Add type definitions
- Browser-compatible version
### Phase 3: Advanced Features
- CLI tools
- Conflict resolution strategies
- Event streaming
- Performance analytics
### Phase 4: Framework Integrations
- LangChain integration
- CrewAI adapter
- AutoGen compatibility layer
## Example: Before and After SDK
### Before SDK (Current Approach):
```python
# 100+ lines of boilerplate for each orchestrator
# Complex prompt generation
# Manual error handling
# No visibility into agent state
```
### After SDK:
```python
from a2amcp import Project, spawn_agents
async def build_app(tasks):
project = Project("my-app")
agents = await spawn_agents(project, tasks)
await project.monitor_until_complete()
print(f"β
Built by {len(agents)} agents")
```
## Conclusion
An SDK would transform A2AMCP from a powerful but complex protocol into an accessible tool that any developer can use. It would:
1. Lower the barrier to entry
2. Enforce best practices automatically
3. Provide debugging and monitoring tools
4. Enable higher-level abstractions
5. Make multi-agent development mainstream
The SDK isn't just nice to haveβit's essential for A2AMCP adoption.