Skip to main content
Glama

Dataproc MCP Server

by warrenzhu25
README.md10.1 kB
# Dataproc MCP Server A Model Context Protocol (MCP) server that provides tools for managing Google Cloud Dataproc clusters and jobs. This server enables AI assistants to interact with Dataproc resources through a standardized interface. ## Features ### Cluster Management - **List Clusters**: View all clusters in a project and region - **Create Cluster**: Provision new Dataproc clusters with custom configurations - **Delete Cluster**: Remove existing clusters - **Get Cluster**: Retrieve detailed information about specific clusters ### Job Management - **Submit Jobs**: Run Spark, PySpark, Spark SQL, Hive, Pig, and Hadoop jobs - **List Jobs**: View jobs across clusters with filtering options - **Get Job**: Retrieve detailed job information and status - **Cancel Job**: Stop running jobs ### Batch Operations - **Create Batch Jobs**: Submit serverless Dataproc batch jobs - **List Batch Jobs**: View all batch jobs in a region - **Get Batch Job**: Retrieve detailed batch job information - **Delete Batch Job**: Remove batch jobs ## Installation ### Prerequisites - **Python 3.11 or higher** (Python 3.13+ recommended) - Google Cloud SDK configured with appropriate permissions - Dataproc API enabled in your Google Cloud project ### Install from Source ```bash # Clone the repository git clone https://github.com/warrenzhu25/dataproc-mcp.git cd dataproc-mcp # Create virtual environment (recommended for Homebrew Python) python3 -m venv .venv source .venv/bin/activate # Install project dependencies pip install -e . # Install development dependencies (optional) pip install -e ".[dev]" ``` ### Alternative Installation Methods ```bash # With uv (if available) uv pip install --system -e . # With uv development dependencies uv pip install --system -e ".[dev]" ``` ### Troubleshooting Installation If you encounter issues: 1. **Python version errors**: Ensure you have Python 3.11+ installed ```bash python --version # Should be 3.11 or higher ``` 2. **Externally managed environment errors**: Use a virtual environment ```bash python3 -m venv .venv source .venv/bin/activate ``` 3. **Missing module errors**: Make sure dependencies are installed ```bash pip install -e . ``` ## Configuration ### Authentication The server supports multiple authentication methods: 1. **Service Account Key** (Recommended for production): ```bash export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account.json" ``` 2. **Application Default Credentials**: ```bash gcloud auth application-default login ``` 3. **Compute Engine Service Account** (when running on GCE) ### Required Permissions Ensure your service account or user has the following IAM roles: - `roles/dataproc.editor` - For cluster and job management - `roles/storage.objectViewer` - For accessing job files in Cloud Storage - `roles/compute.networkUser` - For VPC network access (if using custom networks) ## Usage ### Running the Server First, activate your virtual environment (if using one): ```bash source .venv/bin/activate ``` The server supports multiple transport protocols: ```bash # STDIO (default) - for command-line tools and MCP clients python -m dataproc_mcp_server # HTTP - REST API over HTTP using streamable-http transport DATAPROC_MCP_TRANSPORT=http python -m dataproc_mcp_server # SSE - Server-Sent Events for real-time communication DATAPROC_MCP_TRANSPORT=sse python -m dataproc_mcp_server # Run with entry point script (STDIO only) dataproc-mcp-server ``` #### Transport Configuration - **STDIO** (default): Standard input/output communication for command-line tools and MCP clients - **HTTP**: REST API over HTTP using streamable-http transport - Server URL: `http://localhost:8000/mcp` - Accessible via web clients and HTTP-based MCP clients - **SSE**: Server-Sent Events for real-time bidirectional communication - Server URL: `http://localhost:8000/sse` - Supports streaming responses and live updates #### Environment Variables ```bash # Transport type (stdio, http, sse) export DATAPROC_MCP_TRANSPORT=http # Server host (for HTTP/SSE transports) export DATAPROC_MCP_HOST=0.0.0.0 # Enable debug logging (true, 1, yes to enable) export DATAPROC_MCP_DEBUG=true # Server port (for HTTP/SSE transports) export DATAPROC_MCP_PORT=8080 # Authentication export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account.json" ``` ### MCP Client Configuration Add to your MCP client configuration: ```json { "mcpServers": { "dataproc": { "command": "python", "args": ["-m", "dataproc_mcp_server"], "env": { "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/service-account.json", "DATAPROC_MCP_DEBUG": "true" } } } } ``` ### Testing with MCP Inspector You can test the server using the official MCP Inspector: ```bash # Test STDIO transport npx @modelcontextprotocol/inspector python -m dataproc_mcp_server # Test HTTP transport with debug logging DATAPROC_MCP_TRANSPORT=http DATAPROC_MCP_DEBUG=true python -m dataproc_mcp_server & npx @modelcontextprotocol/inspector --transport http --server-url http://127.0.0.1:8000/mcp # Test SSE transport DATAPROC_MCP_TRANSPORT=sse python -m dataproc_mcp_server & npx @modelcontextprotocol/inspector --transport sse --server-url http://127.0.0.1:8000/sse ``` The MCP Inspector provides a web interface to: - Browse available tools and resources - Test tool calls with custom parameters - View real-time protocol messages - Debug server responses ### Example Tool Usage #### Create a Cluster ```json { "name": "create_cluster", "arguments": { "project_id": "my-project", "region": "us-central1", "cluster_name": "my-cluster", "num_instances": 3, "machine_type": "n1-standard-4", "disk_size_gb": 100, "image_version": "2.1-debian11" } } ``` #### Submit a PySpark Job ```json { "name": "submit_job", "arguments": { "project_id": "my-project", "region": "us-central1", "cluster_name": "my-cluster", "job_type": "pyspark", "main_file": "gs://my-bucket/my-script.py", "args": ["--input", "gs://my-bucket/input", "--output", "gs://my-bucket/output"], "properties": { "spark.executor.memory": "4g", "spark.executor.instances": "3" } } } ``` #### Create a Batch Job ```json { "name": "create_batch_job", "arguments": { "project_id": "my-project", "region": "us-central1", "batch_id": "my-batch-job", "job_type": "pyspark", "main_file": "gs://my-bucket/batch-script.py", "service_account": "my-service-account@my-project.iam.gserviceaccount.com" } } ``` ## Development ### Setup Development Environment ```bash # Install development dependencies uv pip install --system -e ".[dev]" # Or with pip pip install -e ".[dev]" ``` ### Running Tests ```bash # Run all tests pytest # Run with coverage python -m pytest --cov=src/dataproc_mcp_server tests/ # Run specific test file pytest tests/test_dataproc_client.py -v ``` ### Code Quality ```bash # Format code ruff format src/ tests/ # Lint code ruff check src/ tests/ # Type checking (with VS Code + Pylance or mypy) mypy src/ ``` ### Project Structure ``` dataproc-mcp/ ├── src/dataproc_mcp_server/ │ ├── __init__.py │ ├── __main__.py # Entry point │ ├── server.py # MCP server implementation │ ├── dataproc_client.py # Dataproc cluster/job operations │ └── batch_client.py # Dataproc batch operations ├── tests/ │ ├── __init__.py │ ├── test_server.py │ └── test_dataproc_client.py ├── examples/ │ ├── mcp_server_config.json │ └── example_usage.py ├── pyproject.toml ├── CLAUDE.md # Development guide └── README.md ``` ## Troubleshooting ### Common Issues 1. **Authentication Errors**: - Verify `GOOGLE_APPLICATION_CREDENTIALS` is set correctly - Ensure service account has required permissions - Check that Dataproc API is enabled 2. **Network Errors**: - Verify VPC/subnet configurations for custom networks - Check firewall rules for cluster communication - Ensure clusters are in the correct region 3. **Job Submission Failures**: - Verify file paths in Cloud Storage are accessible - Check cluster has sufficient resources - Validate job configuration parameters ### Debug Mode Enable debug logging: ```bash export PYTHONPATH=/path/to/dataproc-mcp/src python -c " import logging logging.basicConfig(level=logging.DEBUG) from dataproc_mcp_server import __main__ import asyncio asyncio.run(__main__.main()) " ``` ## API Reference ### Tools #### Cluster Management - `list_clusters(project_id, region)` - List all clusters - `create_cluster(project_id, region, cluster_name, ...)` - Create cluster - `delete_cluster(project_id, region, cluster_name)` - Delete cluster - `get_cluster(project_id, region, cluster_name)` - Get cluster details #### Job Management - `submit_job(project_id, region, cluster_name, job_type, main_file, ...)` - Submit job - `list_jobs(project_id, region, cluster_name?, job_states?)` - List jobs - `get_job(project_id, region, job_id)` - Get job details - `cancel_job(project_id, region, job_id)` - Cancel job #### Batch Operations - `create_batch_job(project_id, region, batch_id, job_type, main_file, ...)` - Create batch job - `list_batch_jobs(project_id, region, page_size?)` - List batch jobs - `get_batch_job(project_id, region, batch_id)` - Get batch job details - `delete_batch_job(project_id, region, batch_id)` - Delete batch job ### Resources - `dataproc://clusters` - Access cluster information - `dataproc://jobs` - Access job information ## Contributing 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests for new functionality 5. Run the test suite and linting 6. Submit a pull request ## License MIT License - see LICENSE file for details. ## Support For issues and questions: 1. Check the troubleshooting section 2. Review Google Cloud Dataproc documentation 3. Open an issue in the repository

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/warrenzhu25/dataproc-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server