Whissle MCP Server

diarize_speech

Transcribe audio to text with speaker diarization using the Whissle MCP Server. Identifies speakers, generates a transcription, and saves the output file to a specified or default directory. Requires an audio file path and optional parameters for model and speaker count.

Instructions

Convert speech to text with speaker diarization and save the output text file to a given directory. Directory is optional, if not provided, the output file will be saved to $HOME/Desktop.

⚠️ COST WARNING: This tool makes an API call to Whissle which may incur costs. Only use when explicitly requested by the user. Args: audio_file_path (str): Path to the audio file to transcribe model_name (str, optional): The name of the ASR model to use. Defaults to "en-NER" max_speakers (int, optional): Maximum number of speakers to identify boosted_lm_words (List[str], optional): Words to boost in recognition boosted_lm_score (int, optional): Score for boosted words (0-100) output_directory (str, optional): Directory where files should be saved. Defaults to $HOME/Desktop if not provided. Returns: TextContent with the diarized transcription and path to the output file.

Input Schema

NameRequiredDescriptionDefault
audio_file_pathYes
boosted_lm_scoreNo
boosted_lm_wordsNo
max_speakersNo
model_nameNoen-NER

Input Schema (JSON Schema)

{ "properties": { "audio_file_path": { "title": "Audio File Path", "type": "string" }, "boosted_lm_score": { "default": 80, "title": "Boosted Lm Score", "type": "integer" }, "boosted_lm_words": { "default": null, "items": { "type": "string" }, "title": "Boosted Lm Words", "type": "array" }, "max_speakers": { "default": 2, "title": "Max Speakers", "type": "integer" }, "model_name": { "default": "en-NER", "title": "Model Name", "type": "string" } }, "required": [ "audio_file_path" ], "title": "diarize_speechArguments", "type": "object" }

You must be authenticated.

Other Tools from Whissle MCP Server

Related Tools

ID: 8tvihjd5bo