Skip to main content
Glama
vltansky

MCP Server Boilerplate

MCP Server Boilerplate

A TypeScript template for building Model Context Protocol (MCP) servers.

This boilerplate provides a solid foundation for creating MCP servers that can integrate with Cursor, Claude, and other AI assistants. It includes best practices, example tools, proper error handling, and a well-structured TypeScript codebase.

What This Template Provides

  • Complete MCP Server Setup: Ready-to-use server with proper configuration

  • Example Tools: Demonstrates common MCP tool patterns and best practices

  • TypeScript Integration: Full type safety with Zod validation

  • Error Handling: Robust error handling patterns throughout

  • Testing Setup: Vitest configuration for unit testing

  • Development Workflow: Build, watch, and inspection scripts

Key Features

Type-Safe Development: Built with TypeScript and Zod for runtime validation and compile-time safety.

Modular Architecture: Well-organized code structure with separate modules for tools, utilities, and types.

Example Patterns: Demonstrates data retrieval, search, analytics, and system utilities.

Development Ready: Includes hot reload, testing, and MCP inspector integration.

Quick Start

1. Clone and Setup

git clone https://github.com/vltansky/mcp-boilerplate.git cd mcp-server-boilerplate yarn install yarn build

2. Configure MCP Client

Add to your .cursor/mcp.json or other MCP client configuration:

{ "mcpServers": { "my-custom-server": { "command": "node", "args": ["path/to/your/dist/server.js"] } } }

3. Start Developing

yarn watch # Start development with hot reload

4. Test Your Tools

Use the MCP inspector to test your tools:

yarn inspector

Task Master - Getting Started

Once you have your MCP server running, here's how to get the most out of the Task Master workflow:

Next Steps for Project Success

  1. Configure AI models (if needed) and add API keys to .env

    • Models: Use task-master models commands

    • Keys: Add provider API keys to .env (or inside the MCP config file i.e. .cursor/mcp.json)

  2. Discuss your idea with AI and ask for a PRD using example_prd.txt, and save it to scripts/PRD.txt

  3. Ask Cursor Agent (or run CLI) to parse your PRD and generate initial tasks:

    • MCP Tool: parse_prd | CLI: task-master parse-prd scripts/prd.txt

  4. Ask Cursor to analyze the complexity of the tasks in your PRD using research

    • MCP Tool: analyze_project_complexity | CLI: task-master analyze-complexity

  5. Ask Cursor to expand all of your tasks using the complexity analysis

  6. Ask Cursor to begin working on the next task

  7. Add new tasks anytime using the add-task command or MCP tool

  8. Ask Cursor to set the status of one or many tasks/subtasks at a time. Use the task id from the task lists.

  9. Ask Cursor to update all tasks from a specific task id based on new learnings or pivots in your project.

  10. Ship it!

Example Tools Included

Core Tools

  • get_data - Demonstrates data retrieval with filtering and pagination

  • search_items - Shows search functionality with multiple search types (exact, fuzzy, regex)

  • analyze_data - Example analytics tool with chart data generation

  • get_system_info - System utilities for date, timezone, and version information

Tool Patterns Demonstrated

  • Parameter Validation: Using Zod schemas for type-safe input validation

  • Error Handling: Consistent error handling and user-friendly error messages

  • Async Operations: Proper async/await patterns with timeout simulation

  • Response Formatting: JSON and compact-JSON output modes

  • Type Safety: Full TypeScript integration with proper type inference

Project Structure

src/ ├── server.ts # Main MCP server setup and tool registration ├── tools/ │ └── example-tools.ts # Example tool implementations └── utils/ └── formatter.ts # Response formatting utilities docs/ # Documentation files package.json # Dependencies and scripts tsconfig.json # TypeScript configuration vitest.config.ts # Testing configuration

Customizing for Your Use Case

1. Replace Example Tools

Edit src/tools/example-tools.ts to implement your business logic:

export async function yourCustomOperation(input: YourInputType): Promise<YourOutputType> { // Your implementation here return result; }

2. Update Server Registration

Modify src/server.ts to register your tools:

server.tool( 'your_tool_name', 'Description of what your tool does', { // Zod schema for parameters param1: z.string().describe('Parameter description'), param2: z.number().optional().default(10) }, async (input) => { // Tool implementation const result = await yourCustomOperation(input); return { content: [{ type: 'text', text: formatResponse(result, input.outputMode) }] }; } );

3. Add Your Data Layer

Create modules for your specific data sources:

src/ ├── database/ # Database connections and queries ├── external-apis/ # External API integrations ├── file-system/ # File system operations └── your-domain/ # Your business logic

Development Workflow

Available Scripts

  • yarn build - Compile TypeScript to JavaScript

  • yarn watch - Watch mode for development

  • yarn start - Run the compiled server

  • yarn test - Run unit tests

  • yarn test:ui - Run tests with UI

  • yarn inspector - Start MCP inspector for testing tools

Testing Your Tools

  1. Unit Tests: Add tests alongside your tool files

  2. Integration Testing: Use the MCP inspector to test tool behavior

  3. Manual Testing: Test with actual MCP clients like Cursor

Adding Dependencies

For data sources, add appropriate dependencies:

# Database yarn add sqlite3 @types/sqlite3 # HTTP requests yarn add axios # File processing yarn add fs-extra @types/fs-extra # Date handling yarn add date-fns

MCP Best Practices

Tool Design

  • Clear Descriptions: Write detailed tool descriptions for AI assistants

  • Parameter Validation: Use Zod for runtime validation

  • Error Handling: Provide meaningful error messages

  • Output Consistency: Use consistent response formats

Performance

  • Async Operations: Use async/await for all I/O operations

  • Resource Management: Clean up resources properly

  • Caching: Implement caching for expensive operations

  • Pagination: Support pagination for large datasets

Security

  • Input Validation: Validate all inputs with Zod

  • Error Messages: Don't expose sensitive information in errors

  • Resource Limits: Implement appropriate limits and timeouts

  • Authentication: Add authentication if accessing sensitive data

Common Use Cases

File System Tools

  • File search and indexing

  • Content analysis

  • Code parsing and analysis

Database Integration

  • Query interfaces

  • Data analysis and reporting

  • Schema exploration

External API Integration

  • API wrapping and simplification

  • Data aggregation from multiple sources

  • Rate limiting and caching

Development Tools

  • Code generation

  • Testing utilities

  • Build and deployment helpers

Contributing

  1. Fork this repository

  2. Create your feature branch

  3. Add tests for new functionality

  4. Ensure all tests pass

  5. Submit a pull request

License

MIT License - feel free to use this template for your own projects.

Resources


Ready to build your MCP server? Start by customizing the example tools in src/tools/example-tools.ts and updating the server registration in src/server.ts.

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vltansky/mcp-boilerplate'

If you have feedback or need assistance with the MCP directory API, please join our Discord server