Skip to main content
Glama
vitalune

Personal Knowledge Assistant

by vitalune
INTELLIGENCE_FEATURES.md10.8 kB
# Intelligence and Analytics Features This document describes the comprehensive intelligent data processing and analysis features implemented in the Personal Knowledge Assistant MCP Server. ## Overview The IPA-MCP now includes sophisticated AI-powered features for: - Cross-platform search and content discovery - Communication pattern analysis and insights - Social media intelligence and optimization - Intelligent task management and project analysis - Advanced NLP processing and analytics ## Core Components ### 1. Universal Search Engine (`src/tools/search_tools.py`) **Capabilities:** - **Cross-Platform Search**: Search across Gmail, Google Drive, Twitter, LinkedIn simultaneously - **Contextual Search**: Find related content and map relationships between items - **Smart Filtering**: Advanced filtering with relevance scoring and faceted search - **Privacy-Aware**: Respects privacy settings and anonymizes sensitive data **Key Features:** ```python # Universal search across all platforms results = await search_engine.universal_search( query="project alpha", scope=SearchScope.ALL, sort_by=SortOrder.RELEVANCE ) # Contextual relationship mapping contextual_results = await search_engine.contextual_search( query="meeting notes", context_items=["project alpha", "Q4 planning"] ) ``` ### 2. Communication Analysis Engine (`src/tools/analysis_tools.py`) **Capabilities:** - **Communication Pattern Analysis**: Analyze email frequency, response times, peak hours - **Network Analysis**: Map relationships and identify key connectors - **Sentiment Analysis**: Track communication sentiment trends over time - **Productivity Insights**: Detect patterns and provide actionable recommendations **Key Features:** ```python # Analyze communication patterns patterns = await analyzer.analyze_communication_patterns( time_range=TimeRange(start=start_date, end=end_date), include_sentiment=True ) # Relationship analysis relationship = await analyzer.analyze_contact_relationship( contact_identifier="john@example.com" ) # Network analysis network = await analyzer.analyze_communication_network( time_range=time_range, min_interactions=3 ) ``` ### 3. Social Media Intelligence (`src/tools/social_tools.py`) **Capabilities:** - **Content Performance Analysis**: Track engagement across different content types - **Audience Insights**: Understand follower behavior and preferences - **Hashtag Intelligence**: Analyze hashtag performance and trends - **Posting Optimization**: Find optimal posting times and strategies - **Content Suggestions**: AI-generated content recommendations - **Competitor Analysis**: Benchmark against competitors **Key Features:** ```python # Content performance analysis performance = await social_analyzer.analyze_content_performance( platform=SocialPlatform.TWITTER, time_range=time_range ) # Posting schedule optimization schedule = await social_analyzer.optimize_posting_schedule( platform=SocialPlatform.LINKEDIN, time_range=time_range ) # AI content suggestions suggestions = await social_analyzer.generate_content_suggestions( platform=SocialPlatform.TWITTER, content_themes=["AI", "productivity"], count=5 ) ``` ### 4. Intelligent Task Management (`src/tools/task_tools.py`) **Capabilities:** - **Task Extraction**: Automatically extract tasks from emails and documents - **Follow-up Detection**: Identify items requiring follow-up action - **Project Context Aggregation**: Gather all project-related information - **Priority Scoring**: Intelligent priority and urgency classification - **Collaboration Analysis**: Detect collaboration patterns and effectiveness - **Productivity Insights**: Analyze work patterns and provide recommendations **Key Features:** ```python # Extract tasks from email content tasks = await task_engine.extract_tasks_from_email( email_content="Please review the proposal by Friday", email_metadata={"from": "john@example.com", "id": "email_123"} ) # Detect follow-up items follow_ups = await task_engine.detect_follow_ups( time_range=time_range, include_overdue=True ) # Project context analysis project_context = await task_engine.aggregate_project_context( project_name="Project Alpha" ) ``` ### 5. NLP Processing Engine (`src/utils/nlp_processor.py`) **Capabilities:** - **Text Classification**: Categorize content by type and urgency - **Entity Extraction**: Identify people, organizations, locations - **Sentiment Analysis**: Multi-model sentiment analysis with confidence scores - **Topic Modeling**: Extract themes and topics from document collections - **Text Summarization**: Generate extractive summaries - **Privacy Protection**: Anonymize sensitive information **Key Features:** ```python # Comprehensive text analysis analysis = await nlp_processor.analyze_text( text="Your text here", include_entities=True, include_topics=True, anonymize=True ) # Batch processing results = await nlp_processor.batch_analyze_texts( texts=["text1", "text2", "text3"] ) # Topic modeling topic_model = await nlp_processor.train_topic_model( texts=document_collection, n_topics=10 ) ``` ### 6. Advanced Analytics Engine (`src/utils/analytics_engine.py`) **Capabilities:** - **Time Series Analysis**: Trend detection, seasonality analysis, anomaly detection - **Statistical Analysis**: Correlation analysis, significance testing - **Clustering Analysis**: Automatic data segmentation and pattern discovery - **Recommendation Engine**: Personalized recommendations based on behavior - **Privacy-Preserving Analytics**: Differential privacy implementation **Key Features:** ```python # Time series analysis analysis = await analytics_engine.analyze_time_series( data=time_series_points, detect_trends=True, detect_seasonality=True, detect_anomalies=True ) # Correlation analysis correlations = await analytics_engine.analyze_correlations( data={"metric1": [1,2,3], "metric2": [4,5,6]} ) # Generate recommendations recommendations = await analytics_engine.generate_recommendations( user_data=user_behavior_data ) ``` ## Privacy and Security All intelligence features are built with privacy-first principles: - **Data Anonymization**: Sensitive information is automatically anonymized - **Differential Privacy**: Statistical noise added to protect individual privacy - **Encrypted Storage**: All cached data is encrypted at rest - **Minimal Data Retention**: Data is only kept as long as necessary - **User Control**: Users can control what data is analyzed and how ## Integration Examples ### Complete Workflow Example ```python async def analyze_productivity_and_optimize(): # 1. Extract tasks from recent emails time_range = TimeRange( start=datetime.now() - timedelta(days=30), end=datetime.now() ) task_engine = await get_task_engine() communication_analyzer = await get_communication_analyzer() social_analyzer = await get_social_analyzer() # 2. Analyze communication patterns comm_patterns = await communication_analyzer.analyze_communication_patterns( time_range=time_range ) # 3. Get productivity insights productivity_insights = await task_engine.analyze_productivity_patterns( time_range=time_range ) # 4. Optimize social media posting social_optimization = await social_analyzer.optimize_posting_schedule( platform=SocialPlatform.LINKEDIN, time_range=time_range ) # 5. Generate comprehensive report return { "communication_analysis": comm_patterns, "productivity_insights": productivity_insights, "social_optimization": social_optimization, "recommendations": generate_combined_recommendations( comm_patterns, productivity_insights, social_optimization ) } ``` ## Configuration The intelligence features can be configured through the settings: ```python # In your settings intelligence_settings = { "nlp": { "enable_transformers": True, "anonymize_entities": True, "sentiment_threshold": 0.1 }, "analytics": { "enable_differential_privacy": True, "noise_scale": 0.1, "min_data_points": 10 }, "search": { "max_results_per_source": 100, "enable_caching": True, "cache_ttl_hours": 24 }, "social": { "min_posts_for_analysis": 10, "engagement_rate_threshold": 0.02 } } ``` ## Performance Considerations - **Async Processing**: All operations are asynchronous for better performance - **Caching**: Intelligent caching reduces redundant processing - **Batch Processing**: Efficient batch operations for large datasets - **Resource Management**: Automatic cleanup and resource management - **Scalable Architecture**: Designed to handle growing data volumes ## Testing Comprehensive test suite included: ```bash # Run intelligence feature tests python -m pytest tests/test_intelligence_integration.py -v # Run specific component tests python -m pytest tests/test_nlp_processor.py -v python -m pytest tests/test_analytics_engine.py -v ``` ## Error Handling All components include robust error handling: - **Graceful Degradation**: System continues to work even if some features fail - **Retry Logic**: Automatic retries for transient failures - **Fallback Mechanisms**: Alternative approaches when primary methods fail - **Comprehensive Logging**: Detailed logging for troubleshooting ## Future Enhancements Planned improvements: - Real-time processing capabilities - Advanced machine learning model training - Multi-language support - Integration with more platforms - Enhanced visualization features - Mobile-optimized analytics ## Getting Started 1. **Install Dependencies**: ```bash pip install -r requirements.txt ``` 2. **Initialize Components**: ```python from src.tools import search_tools, analysis_tools, social_tools, task_tools # Initialize all intelligence components search_engine = await search_tools.get_search_engine() analyzer = await analysis_tools.get_communication_analyzer() social_analyzer = await social_tools.get_social_analyzer() task_engine = await task_tools.get_task_engine() ``` 3. **Start Analyzing**: ```python # Begin with a simple search results = await search_engine.universal_search("project status") # Analyze your communication patterns patterns = await analyzer.analyze_communication_patterns(time_range) # Get task insights tasks = await task_engine.extract_tasks_from_content(email_content) ``` For more detailed examples and API documentation, see the individual module docstrings and test files.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vitalune/Nexus-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server