# Intelligence and Analytics Features
This document describes the comprehensive intelligent data processing and analysis features implemented in the Personal Knowledge Assistant MCP Server.
## Overview
The IPA-MCP now includes sophisticated AI-powered features for:
- Cross-platform search and content discovery
- Communication pattern analysis and insights
- Social media intelligence and optimization
- Intelligent task management and project analysis
- Advanced NLP processing and analytics
## Core Components
### 1. Universal Search Engine (`src/tools/search_tools.py`)
**Capabilities:**
- **Cross-Platform Search**: Search across Gmail, Google Drive, Twitter, LinkedIn simultaneously
- **Contextual Search**: Find related content and map relationships between items
- **Smart Filtering**: Advanced filtering with relevance scoring and faceted search
- **Privacy-Aware**: Respects privacy settings and anonymizes sensitive data
**Key Features:**
```python
# Universal search across all platforms
results = await search_engine.universal_search(
query="project alpha",
scope=SearchScope.ALL,
sort_by=SortOrder.RELEVANCE
)
# Contextual relationship mapping
contextual_results = await search_engine.contextual_search(
query="meeting notes",
context_items=["project alpha", "Q4 planning"]
)
```
### 2. Communication Analysis Engine (`src/tools/analysis_tools.py`)
**Capabilities:**
- **Communication Pattern Analysis**: Analyze email frequency, response times, peak hours
- **Network Analysis**: Map relationships and identify key connectors
- **Sentiment Analysis**: Track communication sentiment trends over time
- **Productivity Insights**: Detect patterns and provide actionable recommendations
**Key Features:**
```python
# Analyze communication patterns
patterns = await analyzer.analyze_communication_patterns(
time_range=TimeRange(start=start_date, end=end_date),
include_sentiment=True
)
# Relationship analysis
relationship = await analyzer.analyze_contact_relationship(
contact_identifier="john@example.com"
)
# Network analysis
network = await analyzer.analyze_communication_network(
time_range=time_range,
min_interactions=3
)
```
### 3. Social Media Intelligence (`src/tools/social_tools.py`)
**Capabilities:**
- **Content Performance Analysis**: Track engagement across different content types
- **Audience Insights**: Understand follower behavior and preferences
- **Hashtag Intelligence**: Analyze hashtag performance and trends
- **Posting Optimization**: Find optimal posting times and strategies
- **Content Suggestions**: AI-generated content recommendations
- **Competitor Analysis**: Benchmark against competitors
**Key Features:**
```python
# Content performance analysis
performance = await social_analyzer.analyze_content_performance(
platform=SocialPlatform.TWITTER,
time_range=time_range
)
# Posting schedule optimization
schedule = await social_analyzer.optimize_posting_schedule(
platform=SocialPlatform.LINKEDIN,
time_range=time_range
)
# AI content suggestions
suggestions = await social_analyzer.generate_content_suggestions(
platform=SocialPlatform.TWITTER,
content_themes=["AI", "productivity"],
count=5
)
```
### 4. Intelligent Task Management (`src/tools/task_tools.py`)
**Capabilities:**
- **Task Extraction**: Automatically extract tasks from emails and documents
- **Follow-up Detection**: Identify items requiring follow-up action
- **Project Context Aggregation**: Gather all project-related information
- **Priority Scoring**: Intelligent priority and urgency classification
- **Collaboration Analysis**: Detect collaboration patterns and effectiveness
- **Productivity Insights**: Analyze work patterns and provide recommendations
**Key Features:**
```python
# Extract tasks from email content
tasks = await task_engine.extract_tasks_from_email(
email_content="Please review the proposal by Friday",
email_metadata={"from": "john@example.com", "id": "email_123"}
)
# Detect follow-up items
follow_ups = await task_engine.detect_follow_ups(
time_range=time_range,
include_overdue=True
)
# Project context analysis
project_context = await task_engine.aggregate_project_context(
project_name="Project Alpha"
)
```
### 5. NLP Processing Engine (`src/utils/nlp_processor.py`)
**Capabilities:**
- **Text Classification**: Categorize content by type and urgency
- **Entity Extraction**: Identify people, organizations, locations
- **Sentiment Analysis**: Multi-model sentiment analysis with confidence scores
- **Topic Modeling**: Extract themes and topics from document collections
- **Text Summarization**: Generate extractive summaries
- **Privacy Protection**: Anonymize sensitive information
**Key Features:**
```python
# Comprehensive text analysis
analysis = await nlp_processor.analyze_text(
text="Your text here",
include_entities=True,
include_topics=True,
anonymize=True
)
# Batch processing
results = await nlp_processor.batch_analyze_texts(
texts=["text1", "text2", "text3"]
)
# Topic modeling
topic_model = await nlp_processor.train_topic_model(
texts=document_collection,
n_topics=10
)
```
### 6. Advanced Analytics Engine (`src/utils/analytics_engine.py`)
**Capabilities:**
- **Time Series Analysis**: Trend detection, seasonality analysis, anomaly detection
- **Statistical Analysis**: Correlation analysis, significance testing
- **Clustering Analysis**: Automatic data segmentation and pattern discovery
- **Recommendation Engine**: Personalized recommendations based on behavior
- **Privacy-Preserving Analytics**: Differential privacy implementation
**Key Features:**
```python
# Time series analysis
analysis = await analytics_engine.analyze_time_series(
data=time_series_points,
detect_trends=True,
detect_seasonality=True,
detect_anomalies=True
)
# Correlation analysis
correlations = await analytics_engine.analyze_correlations(
data={"metric1": [1,2,3], "metric2": [4,5,6]}
)
# Generate recommendations
recommendations = await analytics_engine.generate_recommendations(
user_data=user_behavior_data
)
```
## Privacy and Security
All intelligence features are built with privacy-first principles:
- **Data Anonymization**: Sensitive information is automatically anonymized
- **Differential Privacy**: Statistical noise added to protect individual privacy
- **Encrypted Storage**: All cached data is encrypted at rest
- **Minimal Data Retention**: Data is only kept as long as necessary
- **User Control**: Users can control what data is analyzed and how
## Integration Examples
### Complete Workflow Example
```python
async def analyze_productivity_and_optimize():
# 1. Extract tasks from recent emails
time_range = TimeRange(
start=datetime.now() - timedelta(days=30),
end=datetime.now()
)
task_engine = await get_task_engine()
communication_analyzer = await get_communication_analyzer()
social_analyzer = await get_social_analyzer()
# 2. Analyze communication patterns
comm_patterns = await communication_analyzer.analyze_communication_patterns(
time_range=time_range
)
# 3. Get productivity insights
productivity_insights = await task_engine.analyze_productivity_patterns(
time_range=time_range
)
# 4. Optimize social media posting
social_optimization = await social_analyzer.optimize_posting_schedule(
platform=SocialPlatform.LINKEDIN,
time_range=time_range
)
# 5. Generate comprehensive report
return {
"communication_analysis": comm_patterns,
"productivity_insights": productivity_insights,
"social_optimization": social_optimization,
"recommendations": generate_combined_recommendations(
comm_patterns, productivity_insights, social_optimization
)
}
```
## Configuration
The intelligence features can be configured through the settings:
```python
# In your settings
intelligence_settings = {
"nlp": {
"enable_transformers": True,
"anonymize_entities": True,
"sentiment_threshold": 0.1
},
"analytics": {
"enable_differential_privacy": True,
"noise_scale": 0.1,
"min_data_points": 10
},
"search": {
"max_results_per_source": 100,
"enable_caching": True,
"cache_ttl_hours": 24
},
"social": {
"min_posts_for_analysis": 10,
"engagement_rate_threshold": 0.02
}
}
```
## Performance Considerations
- **Async Processing**: All operations are asynchronous for better performance
- **Caching**: Intelligent caching reduces redundant processing
- **Batch Processing**: Efficient batch operations for large datasets
- **Resource Management**: Automatic cleanup and resource management
- **Scalable Architecture**: Designed to handle growing data volumes
## Testing
Comprehensive test suite included:
```bash
# Run intelligence feature tests
python -m pytest tests/test_intelligence_integration.py -v
# Run specific component tests
python -m pytest tests/test_nlp_processor.py -v
python -m pytest tests/test_analytics_engine.py -v
```
## Error Handling
All components include robust error handling:
- **Graceful Degradation**: System continues to work even if some features fail
- **Retry Logic**: Automatic retries for transient failures
- **Fallback Mechanisms**: Alternative approaches when primary methods fail
- **Comprehensive Logging**: Detailed logging for troubleshooting
## Future Enhancements
Planned improvements:
- Real-time processing capabilities
- Advanced machine learning model training
- Multi-language support
- Integration with more platforms
- Enhanced visualization features
- Mobile-optimized analytics
## Getting Started
1. **Install Dependencies**:
```bash
pip install -r requirements.txt
```
2. **Initialize Components**:
```python
from src.tools import search_tools, analysis_tools, social_tools, task_tools
# Initialize all intelligence components
search_engine = await search_tools.get_search_engine()
analyzer = await analysis_tools.get_communication_analyzer()
social_analyzer = await social_tools.get_social_analyzer()
task_engine = await task_tools.get_task_engine()
```
3. **Start Analyzing**:
```python
# Begin with a simple search
results = await search_engine.universal_search("project status")
# Analyze your communication patterns
patterns = await analyzer.analyze_communication_patterns(time_range)
# Get task insights
tasks = await task_engine.extract_tasks_from_content(email_content)
```
For more detailed examples and API documentation, see the individual module docstrings and test files.