Skip to main content
Glama

Canvas MCP Server

analyze_peer_review_quality

Analyze peer review comment quality and content in Canvas assignments to assess feedback effectiveness and identify improvement areas.

Instructions

Analyze the quality and content of peer review comments. Args: course_identifier: Canvas course code or ID assignment_id: Canvas assignment ID analysis_criteria: JSON string of custom analysis criteria (optional) generate_report: Whether to generate detailed analysis report

Input Schema

NameRequiredDescriptionDefault
analysis_criteriaNo
assignment_idYes
course_identifierYes
generate_reportNo

Input Schema (JSON Schema)

{ "properties": { "analysis_criteria": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "title": "Analysis Criteria" }, "assignment_id": { "anyOf": [ { "type": "string" }, { "type": "integer" } ], "title": "Assignment Id" }, "course_identifier": { "anyOf": [ { "type": "string" }, { "type": "integer" } ], "title": "Course Identifier" }, "generate_report": { "default": true, "title": "Generate Report", "type": "boolean" } }, "required": [ "course_identifier", "assignment_id" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vishalsachdev/canvas-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server