Skip to main content
Glama

๐Ÿ“Š Article Quadrant Analyzer MCP Server (Enhanced + OCR)

A powerful Model Context Protocol (MCP) server that extracts core insights from articles with OCR support and generates intelligent Chinese quadrant analysis with direct text matrix visualization.

โœจ Features

  • Multi-Source Content Processing: URLs, files, screenshots (OCR), and direct text

  • Professional OCR: Integration with Mistral Document AI API for high-accuracy screenshot analysis

  • 4 Powerful Tools: Content extraction, OCR processing, insights analysis, quadrant generation

  • Chinese Text Matrix Output: Direct ASCII quadrant visualization in dialogue

  • 2x2 Quadrant Analysis: Automatic generation of insightful quadrant visualizations

  • Agent-Centric Design: Optimized for AI agent workflows

  • UVX Deployment: Zero-dependency deployment for minimal cost

๐Ÿš€ Quick Start

1. Fast Deployment (5 minutes)

# Deploy to Cursor ./deploy_to_ide_standard.sh cursor # Deploy to VS Code ./deploy_to_ide_standard.sh vscode # Deploy to Claude Desktop ./deploy_to_ide_standard.sh claude # Validate deployment ./deploy_to_ide_standard.sh validate

2. Manual Setup

# Install dependencies uvx --quiet --python 3.12 --with fastmcp python test_simple_server.py # Start MCP Inspector for testing fastmcp dev test_simple_server.py

๐Ÿ“ Project Structure

mcp-server-article-quadrant/ โ”œโ”€โ”€ test_simple_server.py # Main MCP server (3 tools) โ”œโ”€โ”€ deploy_to_ide_standard.sh # Automated deployment script โ”œโ”€โ”€ config/ # IDE configurations โ”‚ โ”œโ”€โ”€ config_cursor_standard.json โ”‚ โ”œโ”€โ”€ config_vscode_standard.json โ”‚ โ”œโ”€โ”€ config_claude_desktop_standard.json โ”‚ โ”œโ”€โ”€ config_emacs.el โ”‚ โ””โ”€โ”€ config_neovim.lua โ”œโ”€โ”€ src/mcp_server_article_quadrant/ # Modular source code โ”‚ โ”œโ”€โ”€ server.py # FastMCP server setup โ”‚ โ”œโ”€โ”€ tools/ # MCP tools โ”‚ โ”‚ โ”œโ”€โ”€ extract_content.py โ”‚ โ”‚ โ”œโ”€โ”€ analyze_insights.py โ”‚ โ”‚ โ””โ”€โ”€ generate_quadrant.py โ”‚ โ”œโ”€โ”€ models/ # Pydantic models โ”‚ โ”‚ โ”œโ”€โ”€ content.py โ”‚ โ”‚ โ”œโ”€โ”€ analysis.py โ”‚ โ”‚ โ””โ”€โ”€ quadrant.py โ”‚ โ””โ”€โ”€ utils/ # Utilities โ”‚ โ”œโ”€โ”€ content_extractor.py โ”‚ โ”œโ”€โ”€ quadrant_generator.py โ”‚ โ””โ”€โ”€ image_processor.py โ”œโ”€โ”€ .trae/specs/article-quadrant-analyzer/ # Technical specifications โ”‚ โ”œโ”€โ”€ spec.md (24KB) # Complete MCP server specification โ”‚ โ””โ”€โ”€ api-research.md (25KB) # API research and content sources โ”œโ”€โ”€ pyproject.toml # Project configuration โ”œโ”€โ”€ .env.example # Environment variables template โ”œโ”€โ”€ 2X2ๅˆ†ๆžprompt.md # Original analysis prompt โ””โ”€โ”€ DOCUMENTATION_SUMMARY.md # Documentation cleanup summary

๐Ÿ”ง Configuration

Environment Variables

# Mistral Document AI API (for OCR) MISTRAL_API_KEY=your_api_key_here # Content Processing CONTENT_MAX_LENGTH=50000 OCR_MAX_FILE_SIZE=10485760

IDE Configuration Examples

Cursor:

{ "mcpServers": { "article-quadrant-analyzer": { "command": "uvx", "args": [ "--quiet", "--python", "3.12", "--with", "fastmcp", "python", "/Users/vincent/Library/CloudStorage/SynologyDrive-vincent/My.create/Developer/MCP/test_simple_server.py" ] } } }

More configuration examples in config/ directory.

๐Ÿ› ๏ธ MCP Tools

1. extract_article_content_simple

Enhanced content extraction with AI-friendly interface

Intelligent Processing:

  • Automatic HTML/XML tag removal

  • Language detection (Chinese/English/Mixed)

  • Content quality analysis

  • URL and format detection

  • Comprehensive metrics (characters, words, sentences, paragraphs)

Universal Input Support:

  • URLs (news websites, WeChat public accounts)

  • Text files and documents

  • Direct text input

  • OCR processed content

  • Mixed-format content

Smart Output:

  • Content preview with truncation

  • Complexity assessment

  • Processing recommendations

  • Next-step guidance

2. analyze_article_insights_simple

Advanced content insights extraction

Keyword Analysis:

  • Frequency-based keyword extraction

  • Topic identification and clustering

  • Content summarization

  • Trend detection

Intelligence Features:

  • Automatic topic categorization

  • Insight relevance scoring

  • Content structure analysis

  • Actionable insight generation

3. extract_text_from_image

Professional OCR with Mistral Document AI API

Advanced OCR Processing:

  • High-accuracy text extraction from images and screenshots

  • Support for multiple image formats (PNG, JPG, WEBP)

  • Automatic language detection (Chinese/English/Mixed)

  • Mistral Document AI API integration for best results

Smart Error Handling:

  • Graceful fallback when API key not configured

  • Detailed error messages and troubleshooting guidance

  • Image validation and preprocessing

  • Network timeout and retry logic

Input/Output Support:

  • File paths to local images

  • Base64 encoded image data

  • Real-time confidence scoring

  • Extracted text ready for quadrant analysis

4. generate_quadrant_analysis_simple

Enhanced Chinese quadrant analysis engine

Smart Content Processing:

  • Intelligent Chinese language detection and analysis

  • Context-aware content preprocessing

  • Flexible axis labeling (supports Chinese labels)

  • Robust error handling and parameter validation

Advanced Classification Logic:

  • Collaboration Analysis: Detects team work, coordination, and group activities

  • Textual Analysis: Identifies documentation, writing, and formal communication

  • Pattern Recognition: Maps content to appropriate quadrants based on actual text patterns

  • Chinese Context Support: Specifically trained for Chinese business and work scenarios

Direct Matrix Output:

  • Real-time ASCII Visualization: Matrix appears directly in dialogue

  • Chinese Quadrant Names: ้‡็‚นๆŠ•ๅ…ฅๅŒบ, ไธ“ไธšๅˆ†ๆžๅŒบ, ๅŸบ็ก€็ปดๆŠคๅŒบ, ๅˆ›ๆ„ๅไฝœๅŒบ

  • Content-Specific Mapping: Analyzes your actual content for accurate placement

  • No Conversion Needed: Instant results without SVG/PNG conversion steps

Rich Output Format:

  • Professional quadrant mapping

  • Detailed content metrics

  • Strategic insights and recommendations

  • Direct text matrix visualization (Chinese)

  • Smart content classification based on actual text analysis

AI-Friendly Features:

  • Automatic XML/HTML tag cleanup

  • Flexible parameter format support

  • Comprehensive error handling

  • Context-aware response generation

  • Chinese language support with intelligent content analysis

๐ŸŽจ Enhanced Visualization Capabilities:

  • Intelligent Text Matrix: Direct ASCII quadrant display in dialogue

  • Chinese Content Analysis: Smart classification based on collaboration vs text levels

  • Context-Aware Mapping: Analyzes content patterns for accurate quadrant placement

  • Real-time Results: No SVG conversion needed - matrix appears immediately

  • Dynamic Naming: Quadrants named in Chinese (้‡็‚นๆŠ•ๅ…ฅๅŒบ, ไธ“ไธšๅˆ†ๆžๅŒบ, ๅŸบ็ก€็ปดๆŠคๅŒบ, ๅˆ›ๆ„ๅไฝœๅŒบ)

๐Ÿ“‹ Supported Content Sources

  • News Websites: Major news platforms and online publications

  • WeChat Public Accounts: Articles from WeChat official accounts

  • Screenshots: OCR processing via Mistral Document AI API

  • Text Files: Direct file content extraction

  • Direct Input: Manual text entry for analysis

๐ŸŽฏ Use Cases

  • Work Process Analysis: Analyze team collaboration workflows and documentation patterns

  • Project Management: Visualize task distribution and work flow efficiency

  • Team Coordination: Identify collaboration bottlenecks and optimization opportunities

  • Content Strategy: Map content types across collaboration and formality dimensions

  • Decision Making: Framework for resource allocation and task prioritization

๐Ÿ“Š Sample Output

Input:

ๅทฅไฝœ็š„ๆตๅŠจๆ€ง: ๆฒกๆœ‰ไปปไฝ•ไธ€ไธชๅฒ—ไฝๅชๅญ˜ๅœจไบŽไธ€ไธช่ฑก้™... ไพ‹ๅฆ‚ๅผ€ๅ‘ๆ–ฐๅŠŸ่ƒฝ: ๅ›ข้˜Ÿๅคด่„‘้ฃŽๆšด๏ผŒๆ’ฐๅ†™PRDๆ–‡ๆกฃ๏ผŒๅทฅ็จ‹ๅธˆ็‹ฌ็ซ‹็ผ–ๅ†™ไปฃ็ ...

Direct Matrix Output:

๐ŸŽฏ ๅ››่ฑก้™็Ÿฉ้˜ตๅ›พ โ†‘ ๆ–‡ๆœฌๅŒ–็จ‹ๅบฆ โ†‘ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Q1: ้‡็‚นๆŠ•ๅ…ฅๅŒบ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ โ€ข ๅ›ข้˜Ÿๅไฝœๆ–‡ๆกฃ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข ้›†ไฝ“่ฎจ่ฎบ่ฎฐๅฝ• โ”‚ โ”‚ โ”‚ โ”‚ โ€ข ๅ…ฑไบซๆˆๆžœๅฑ•็คบ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Q2: ไธ“ไธšๅˆ†ๆžๅŒบ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ โ€ข ็‹ฌ็ซ‹ๆทฑๅบฆๆ€่€ƒ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข ไธชไบบไธ“ไธšๅˆ†ๆž โ”‚ โ”‚ โ”‚ โ”‚ โ€ข ๆ ธๅฟƒๆŠ€ๆœฏๅฎž็Žฐ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ† ๅไฝœ็จ‹ๅบฆ โ† โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ†’ ๅไฝœ็จ‹ๅบฆ โ†’ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Q3: ๅŸบ็ก€็ปดๆŠคๅŒบ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ โ€ข ๅŸบ็ก€็ปดๆŠคๅทฅไฝœ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข ๅธธ่ง„ๆ“ไฝœๆต็จ‹ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข ๆ ‡ๅ‡†่ง„่Œƒๆ‰ง่กŒ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Q4: ๅˆ›ๆ„ๅไฝœๅŒบ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ โ€ข ๅˆ›ๆ„ๅคด่„‘้ฃŽๆšด โ”‚ โ”‚ โ”‚ โ”‚ โ€ข ่ง†่ง‰ๅŒ–่กจ่พพ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข ไบ’ๅŠจๅไฝœๅฑ•็คบ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿ” Testing & Validation

# Test MCP Inspector fastmcp dev test_simple_server.py # Opens: http://127.0.0.1:6274 # Validate UVX deployment ./deploy_to_ide_standard.sh validate # Test individual tools via MCP Inspector interface

๐Ÿ“š Documentation

โšก Performance

  • Startup Time: <2 seconds with UVX

  • Memory Usage: ~50MB baseline

  • Processing: 1-5 seconds for typical articles

  • OCR Processing: 3-10 seconds via Mistral API

๐ŸŽจ Generated Output Examples

The server generates professional quadrant analyses in SVG format showing:

  • Strategic Positioning: Content mapped across two axes

  • Visual Clarity: Clean, professional quadrants with labels

  • Actionable Insights: Recommendations based on positioning

  • Contextual Analysis: Tailored to content type and goals


๐Ÿš€ Ready to transform your article analysis workflow!

Generated with FastMCP Spec-Driven Development Guide

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vincent623/-Article-Quadrant-Analyzer-MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server