Skip to main content
Glama

LinkedIn Automated Post Creator

config.py1.38 kB
import os from pathlib import Path from dotenv import load_dotenv import pytz # Load environment variables load_dotenv() # Base directory BASE_DIR = Path(__file__).resolve().parent.parent # LinkedIn API Configuration LINKEDIN_CLIENT_ID = os.getenv("LINKEDIN_CLIENT_ID") LINKEDIN_CLIENT_SECRET = os.getenv("LINKEDIN_CLIENT_SECRET") LINKEDIN_REDIRECT_URI = os.getenv("LINKEDIN_REDIRECT_URI", "http://localhost:8000/callback") # MCP Server Configuration MCP_SERVER_HOST = os.getenv("MCP_SERVER_HOST", "localhost") MCP_SERVER_PORT = int(os.getenv("MCP_SERVER_PORT", "8000")) MCP_SERVER_SECRET = os.getenv("MCP_SERVER_SECRET") # Database Configuration DATABASE_URL = os.getenv("DATABASE_URL", f"sqlite:///{BASE_DIR}/linkedin_automation.db") # Post Scheduling Configuration DEFAULT_POST_TIME = os.getenv("DEFAULT_POST_TIME", "09:00") # Default time for daily posts TIMEZONE = os.getenv("TIMEZONE", "Asia/Kolkata") # Set default timezone to IST IST = pytz.timezone(TIMEZONE) # Create IST timezone object # Content Generation Configuration CONTENT_TEMPLATES_DIR = BASE_DIR / "templates" MAX_POST_LENGTH = 3000 # LinkedIn's maximum post length # Logging Configuration LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO") LOG_FILE = BASE_DIR / "logs" / "app.log" # Create necessary directories os.makedirs(CONTENT_TEMPLATES_DIR, exist_ok=True) os.makedirs(BASE_DIR / "logs", exist_ok=True)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vijayaahirejadhav/MCP-Server-Project'

If you have feedback or need assistance with the MCP directory API, please join our Discord server