Skip to main content
Glama
base.ts1.59 kB
/** * Standard Evaluator Interface Following OpenAI Evals Pattern * * Based on OpenAI Evals framework standards: * - Each evaluator has a name and description * - evaluate() method takes input, output, and optional ideal * - Returns standardized EvaluationScore */ export interface EvaluationScore { key: string; // Evaluator name (e.g., "accuracy", "relevance") score: number; // Numeric score (0.0 to 1.0) comment?: string; // Optional reasoning/explanation confidence?: number; // Confidence in the evaluation (0.0 to 1.0) } export interface EvaluationSample { input: Record<string, any>; output: string; ideal?: any; metadata?: Record<string, any>; } export interface PerformanceMetrics { duration_ms: number; input_tokens: number; output_tokens: number; total_tokens: number; cost_usd?: number; iterations?: number; tool_calls_executed?: number; cache_hit_rate?: number; model_version: string; } export interface EvaluationResult { sample_id: string; model: string; timestamp: string; // Quality metrics (AI-graded) quality_scores: Record<string, EvaluationScore>; // Performance metrics (system-measured) performance: PerformanceMetrics; // Derived efficiency metrics efficiency: { quality_per_second: number; // overall_quality / duration_seconds quality_per_dollar?: number; // overall_quality / cost_usd quality_per_token: number; // overall_quality / total_tokens }; // Raw data for analysis input: Record<string, any>; output: string; ideal?: any; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vfarcic/dot-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server