# PRD 156: AI Evaluation Standards Compliance Framework
## Overview
**Problem Statement**: The dot-ai toolkit has a powerful custom AI evaluation framework, but uses proprietary formats that don't integrate with industry-standard ML platforms (OpenAI Evals, LangSmith, MLflow), limiting research collaboration, industry credibility, and team productivity.
**Solution**: Implement standards-compliant experiment tracking system that maintains all existing evaluation capabilities while adding compatibility with OpenAI Evals, LangSmith, MLflow, and statistical significance testing.
**Success Metrics**:
- 100% compatibility with OpenAI Evals framework
- Export/import functionality with LangSmith and MLflow
- Statistical significance testing for all model comparisons
- Reproducible experiments across different environments
## Strategic Context
### Business Impact
- **Industry Leadership**: First DevOps AI toolkit with full standards compliance
- **Research Collaboration**: Enable academic partnerships and benchmark participation
- **Team Productivity**: Integrate with existing ML platform workflows
- **Credibility**: Follow established evaluation practices recognized by ML community
### User Impact
- **Platform Integration**: Use familiar ML tools (MLflow UI, W&B dashboards) with dot-ai data
- **Statistical Confidence**: Know when model improvements are statistically significant
- **Reproducibility**: Reproduce evaluation results across different environments
- **Benchmarking**: Compare dot-ai against other AI systems using standard metrics
## Current State Analysis
### Existing Evaluation Infrastructure (Strong Foundation)
- **Comparative Evaluation Framework**: AI-as-judge methodology with weighted criteria
- **Multi-Provider Support**: Claude, GPT-5, GPT-5 Pro dataset generation
- **Tool Coverage**: Remediation, Recommendation, Capabilities, Patterns, Policies
- **Dataset Generation**: 150+ evaluation datasets from real integration test runs
- **Performance Analysis**: Speed, quality, token efficiency comparative analysis
### Current Limitations (Standards Gap)
- **Proprietary Schema**: Custom JSONL format not compatible with industry tools
- **No Statistical Testing**: Comparative scores lack significance testing
- **Limited Export**: Can't export to MLflow, LangSmith, or W&B
- **Non-Reproducible**: Missing experiment versioning and environment capture
## Technical Architecture (Standards-First Design)
### 1. Standard Experiment Schema
```typescript
interface StandardExperiment {
experiment_id: string; // UUID for experiment tracking
name: string; // Human-readable experiment name
description: string; // Experiment purpose and context
dataset_name: string; // Reference to evaluation dataset
models: string[]; // List of evaluated models
evaluators: string[]; // List of evaluation criteria used
// Core results following MLflow/LangSmith pattern
results: {
summary: {
total_samples: number;
duration_seconds: number;
cost_usd: number;
statistical_analysis: {
p_value: number; // Statistical significance
confidence_interval: [number, number]; // 95% confidence interval
effect_size: number; // Cohen's d or similar
significant: boolean; // p < 0.05
};
};
model_performance: Record<string, {
avg_score: number;
std_deviation: number;
sample_count: number;
category_scores: Record<string, number>; // Quality, Efficiency, etc.
metadata: {
avg_tokens: number;
avg_response_time_ms: number;
failure_rate: number;
};
}>;
};
// Standard metadata for reproducibility
metadata: {
created_at: string; // ISO timestamp
framework_version: string; // dot-ai version
environment: {
platform: string;
node_version: string;
git_commit: string;
};
tags: string[]; // Searchable tags
parameters: Record<string, any>; // Evaluation parameters
};
}
```
### 2. OpenAI Evals Compatibility
```yaml
# eval-configs/dot-ai-kubernetes-deployment.yaml (OpenAI Evals format)
dot-ai-kubernetes-deployment:
id: dot-ai-kubernetes-deployment.dev.v0
description: Evaluate Kubernetes deployment recommendations
disclaimer: This evaluation tests dot-ai's deployment recommendation accuracy
metrics:
- accuracy
- f1_score
eval_spec:
cls: evals.elsuite.basic.match:Match
args:
samples_jsonl: kubernetes-deployment-standard.jsonl
match_fn: dot_ai_kubernetes_match
completion_fns:
- anthropic/claude-sonnet
- openai/gpt-4
- openai/gpt-3.5-turbo
```
### 3. Statistical Analysis Engine
```typescript
interface StatisticalAnalysis {
// Significance testing using appropriate statistical tests
performSignificanceTest(
modelA: EvaluationResults,
modelB: EvaluationResults
): Promise<{
p_value: number;
confidence_interval: [number, number];
effect_size: number;
test_type: 'welch_t_test' | 'mann_whitney_u' | 'bootstrap';
significant: boolean;
interpretation: string;
}>;
// Multi-model ANOVA for more than 2 models
performMultiModelAnalysis(
models: Record<string, EvaluationResults>
): Promise<MultiModelAnalysis>;
// Power analysis for sample size recommendations
calculateRequiredSampleSize(
effect_size: number,
power: number,
alpha: number
): number;
}
```
### 4. Platform Export Adapters
```typescript
// MLflow format export
class MLflowExporter {
async exportExperiment(experiment: StandardExperiment): Promise<MLflowRun> {
return {
run_id: experiment.experiment_id,
experiment_id: this.getOrCreateMLflowExperiment(experiment.name),
status: 'FINISHED',
start_time: new Date(experiment.metadata.created_at).getTime(),
end_time: new Date(experiment.metadata.created_at).getTime() + experiment.results.summary.duration_seconds * 1000,
metrics: this.convertToMLflowMetrics(experiment.results),
params: experiment.metadata.parameters,
tags: Object.fromEntries(experiment.metadata.tags.map(tag => [tag, 'true']))
};
}
}
// LangSmith format export
class LangSmithExporter {
async exportExperiment(experiment: StandardExperiment): Promise<LangSmithDataset> {
return {
id: experiment.experiment_id,
name: experiment.dataset_name,
description: experiment.description,
created_at: experiment.metadata.created_at,
examples: await this.convertToLangSmithExamples(experiment),
runs: await this.convertToLangSmithRuns(experiment)
};
}
}
```
## Implementation Plan
### Milestone 1: Core Standards Infrastructure ⬜
**Target**: Implement standard experiment schema and data transformation
**Key Deliverables:**
- [ ] **StandardExperiment Interface**: TypeScript interface following MLflow/LangSmith patterns
- [ ] **Data Transformation Pipeline**: Convert existing custom JSONL to standard schema
- [ ] **Experiment Manager**: Core experiment tracking and storage functionality
- [ ] **Backward Compatibility**: Maintain existing evaluation workflow while adding standards
**Breaking Changes:**
- [ ] **Add**: Standard experiment metadata to all evaluation runs
- [ ] **Enhance**: Evaluation results with statistical metadata preparation
- [ ] **Create**: Migration utility for existing evaluation data
**Success Criteria:**
- [ ] All new evaluations generate standard-compliant experiment records
- [ ] Existing evaluation data can be migrated to standard format
- [ ] No disruption to current evaluation workflow
### Milestone 2: Statistical Significance Testing ⬜
**Target**: Add rigorous statistical analysis to all model comparisons
**Key Deliverables:**
- [ ] **Statistical Analysis Engine**: Significance testing, confidence intervals, effect sizes
- [ ] **Multi-Model ANOVA**: Statistical comparison of 3+ models simultaneously
- [ ] **Power Analysis**: Sample size recommendations for reliable results
- [ ] **Uncertainty Quantification**: Confidence intervals for all performance metrics
**Breaking Changes:**
- [ ] **Replace**: Simple comparative scores with statistically validated comparisons
- [ ] **Add**: P-values and confidence intervals to all evaluation reports
- [ ] **Enhance**: Model selection recommendations with statistical backing
**Success Criteria:**
- [ ] All model comparisons include p-values and confidence intervals
- [ ] Statistical significance determines model ranking recommendations
- [ ] Power analysis prevents conclusions from insufficient data
### Milestone 3: OpenAI Evals Compatibility ⬜
**Target**: Full compatibility with OpenAI Evals framework
**Key Deliverables:**
- [ ] **Standard Dataset Format**: Convert dot-ai datasets to OpenAI Evals JSONL format
- [ ] **Evaluation Configs**: YAML configs for each dot-ai evaluation scenario
- [ ] **Custom Match Functions**: Domain-specific matching for Kubernetes evaluations
- [ ] **Integration Testing**: Verify evaluations run in actual OpenAI Evals framework
**Breaking Changes:**
- [ ] **Restructure**: Dataset storage to support both custom and standard formats
- [ ] **Add**: OpenAI Evals configuration files for all evaluation scenarios
**Success Criteria:**
- [ ] Can run dot-ai evaluations using official OpenAI Evals CLI
- [ ] Datasets validate against OpenAI Evals schema requirements
- [ ] Results comparable between dot-ai and OpenAI Evals execution
### Milestone 4: MLflow & LangSmith Integration ⬜
**Target**: Export and import capabilities with major ML platforms
**Key Deliverables:**
- [ ] **MLflow Exporter**: Export experiments to MLflow tracking format
- [ ] **LangSmith Exporter**: Export datasets and runs to LangSmith format
- [ ] **Import Functionality**: Import experiments from external platforms
- [ ] **Platform UI Integration**: View dot-ai results in MLflow/LangSmith UIs
**Breaking Changes:**
- [ ] **Add**: Export commands to evaluation CLI
- [ ] **Integrate**: Platform-specific metadata in experiment records
**Success Criteria:**
- [ ] Can export dot-ai experiments to MLflow and view in MLflow UI
- [ ] Can export to LangSmith and run comparative analyses
- [ ] External teams can import and analyze dot-ai evaluation data
### Milestone 5: Reproducible Evaluation Environment ⬜
**Target**: Ensure evaluation results are reproducible across environments
**Key Deliverables:**
- [ ] **Environment Capture**: Record all relevant environment variables and versions
- [ ] **Deterministic Execution**: Consistent results across different machines
- [ ] **Versioned Datasets**: Dataset versioning with content hashing
- [ ] **Experiment Replay**: Ability to exactly reproduce previous evaluations
**Breaking Changes:**
- [ ] **Add**: Environment metadata to all experiments
- [ ] **Require**: Version pinning for reproducible evaluations
**Success Criteria:**
- [ ] Same evaluation produces identical results on different machines
- [ ] Can reproduce historical evaluation results exactly
- [ ] Environment differences are captured and reportable
### Milestone 6: Enhanced Reporting & Analytics ⬜
**Target**: Advanced analytics and reporting capabilities
**Key Deliverables:**
- [ ] **Statistical Reports**: Enhanced reports with significance testing results
- [ ] **Trend Analysis**: Performance trends over time across model versions
- [ ] **Interactive Dashboards**: Web-based evaluation result exploration
- [ ] **Automated Insights**: AI-generated insights from evaluation patterns
**Success Criteria:**
- [ ] Reports include statistical significance and confidence intervals
- [ ] Can track model performance trends over time
- [ ] Interactive exploration of evaluation results
## Standards Compliance Validation
### OpenAI Evals Integration Testing
- [ ] Install and run official OpenAI Evals framework
- [ ] Execute dot-ai datasets using OpenAI Evals CLI
- [ ] Validate results match dot-ai evaluation outcomes
- [ ] Confirm all dataset formats pass OpenAI Evals validation
### MLflow Integration Testing
- [ ] Export experiments to MLflow tracking server
- [ ] View and analyze results in MLflow UI
- [ ] Validate all metadata and metrics are preserved
- [ ] Test experiment comparison functionality
### LangSmith Integration Testing
- [ ] Export datasets to LangSmith platform
- [ ] Run comparative evaluations in LangSmith
- [ ] Validate dataset format compatibility
- [ ] Test result import back to dot-ai system
## Risk Assessment
### High Impact Risks
#### Risk: Standards Compatibility Complexity
- **Probability**: Medium
- **Impact**: High
- **Mitigation**: Start with OpenAI Evals format first, expand gradually
- **Owner**: AI Engineering Team
#### Risk: Statistical Analysis Overhead
- **Probability**: High
- **Impact**: Medium
- **Mitigation**: Implement optional statistical analysis, use efficient algorithms
- **Owner**: Development Team
### Medium Impact Risks
#### Risk: Breaking Changes to Existing Workflow
- **Probability**: Medium
- **Impact**: Medium
- **Mitigation**: Maintain backward compatibility, phased migration
- **Owner**: Development Team
#### Risk: Platform Integration Complexity
- **Probability**: Medium
- **Impact**: Medium
- **Mitigation**: Start with export-only, add import functionality later
- **Owner**: Integration Team
## Resource Requirements
### Development Effort
- **Total Estimate**: 8-12 weeks (1 senior developer)
- **Standards Compliance Testing**: 2-3 weeks additional
- **Platform Integration**: 3-4 weeks for each major platform
### Standards Validation Requirements
- **OpenAI Evals Framework**: Install and validate against official framework
- **MLflow Setup**: Test server deployment and experiment tracking
- **LangSmith Access**: Platform access for integration testing
- **Statistical Review**: Academic review of statistical methodology
## Success Criteria
### Functional Requirements
- [ ] **OpenAI Evals Compatible**: All datasets and configs work with OpenAI Evals framework
- [ ] **MLflow Integration**: Can export/import experiments to MLflow
- [ ] **LangSmith Integration**: Can export/import datasets and runs to LangSmith
- [ ] **Statistical Rigor**: All comparisons include significance testing and confidence intervals
### Quality Requirements
- [ ] **Reproducibility**: All evaluations reproducible across environments
- [ ] **Academic Standards**: Statistical methodology suitable for research publication
- [ ] **Industry Credibility**: Framework recognized by ML evaluation community
- [ ] **Backward Compatibility**: Existing evaluation workflow continues to work
---
**Status**: Not Started - Spun out from PRD 154 Milestone 3
**Compliance**: OpenAI Evals, LangSmith, MLflow Standards
**Dependencies**: PRD 154 evaluation framework (complete)
**Owner**: AI Engineering Team
**Created**: 2025-10-12