Skip to main content
Glama
kubernetes-toolhive-setup.md5.09 kB
# ToolHive Kubernetes Setup Guide **Deploy DevOps AI Toolkit MCP Server to Kubernetes using ToolHive operator - simplified enterprise deployment with built-in security and multi-tenancy.** ## When to Use This Method ✅ **Perfect for:** - Enterprise environments requiring built-in security - Multi-team deployments with isolation requirements - Organizations wanting simplified Kubernetes management - Teams preferring operator-managed deployments - Environments requiring automatic RBAC and security policies ❌ **Consider alternatives for:** - Single developer local usage (use [Docker setup](docker-setup.md) instead) - Teams wanting full control over Kubernetes resources (use [Traditional Kubernetes](kubernetes-setup.md) instead) - Environments without operator installation permissions → See [other setup methods](../mcp-setup.md#setup-methods) for alternatives → **Learn more about ToolHive**: See [ToolHive documentation](https://docs.stacklok.com/toolhive) for operator details and advanced configuration ## What You Get - **HTTP Transport MCP Server** - Direct HTTP/SSE access for MCP clients - **ToolHive Operator Management** - Simplified deployment via MCPServer custom resource - **Built-in Security** - Automatic RBAC, security policies, and container isolation - **Multi-tenancy Support** - Built-in isolation between different MCP server instances - **Integrated Qdrant Database** - Vector database for capability and pattern management - **Native HTTP Support** - Direct MCP-over-HTTP without proxy translation ## Prerequisites - Kubernetes cluster (1.19+) with kubectl access - Helm 3.x installed - Cluster admin permissions (required for ToolHive operator installation) - AI model API key (default: Anthropic). See [AI Model Configuration](../mcp-setup.md#ai-model-configuration) for available model options. - OpenAI API key (required for vector operations) ## Quick Start (10 Minutes) ### Step 1: Install ToolHive Operator Install the ToolHive operator CRDs and operator: ```bash # Install ToolHive operator CRDs helm upgrade --install toolhive-operator-crds \ oci://ghcr.io/stacklok/toolhive/toolhive-operator-crds \ --wait # Install ToolHive operator helm upgrade --install toolhive-operator \ oci://ghcr.io/stacklok/toolhive/toolhive-operator \ --namespace toolhive-system \ --create-namespace \ --wait ``` ### Step 2: Set Environment Variables Export your API keys: ```bash # Required: Set your API keys export ANTHROPIC_API_KEY="sk-ant-api03-..." export OPENAI_API_KEY="sk-proj-..." # Optional: Custom endpoints (OpenRouter, self-hosted) # See: https://github.com/vfarcic/dot-ai/blob/main/docs/mcp-setup.md#custom-endpoint-configuration export CUSTOM_LLM_API_KEY="sk-or-v1-..." export CUSTOM_LLM_BASE_URL="https://openrouter.ai/api/v1" ``` ### Step 3: Install the Helm Chart with ToolHive Method Install the MCP server using ToolHive deployment method: ```bash # Install using ToolHive deployment method helm install dot-ai-mcp oci://ghcr.io/vfarcic/dot-ai/charts/dot-ai:0.83.0 \ --set deployment.method=toolhive \ --set secrets.anthropic.apiKey="$ANTHROPIC_API_KEY" \ --set secrets.openai.apiKey="$OPENAI_API_KEY" \ --set ingress.enabled=true \ --set ingress.host="dot-ai.127.0.0.1.nip.io" \ --create-namespace \ --namespace dot-ai \ --wait ``` **Notes**: - This documentation may use an outdated version. Check the [GitHub Releases](https://github.com/vfarcic/dot-ai/releases) for the latest version and replace `0.83.0` with the current version tag. - Replace `dot-ai.127.0.0.1.nip.io` with your desired hostname for external access. - For enhanced security, create a secret named `dot-ai-secrets` with keys `anthropic-api-key` and `openai-api-key` instead of using `--set` arguments. - For all available configuration options, see the [Helm values file](https://github.com/vfarcic/dot-ai/blob/main/charts/values.yaml). - **Observability/Tracing**: Add tracing environment variables via `extraEnv` in your values file. See [Observability Guide](../observability-guide.md) for complete configuration. ### Step 4: Configure MCP Client Create an `.mcp.json` file in your project root: ```json { "mcpServers": { "dot-ai": { "type": "http", "url": "http://dot-ai.127.0.0.1.nip.io" } } } ``` **Save this configuration:** - **Claude Code**: Save as `.mcp.json` in your project directory - **Other clients**: See [MCP client configuration](../mcp-setup.md#mcp-client-compatibility) for filename and location **Notes**: - Replace the URL with your actual hostname if you changed `ingress.host`. - For production deployments, configure TLS certificates and use `https://` URLs for secure connections. ### Step 5: Start Your MCP Client Start your MCP client (e.g., `claude` for Claude Code). The client will automatically connect to your ToolHive-deployed MCP server. ### Step 6: Verify Everything Works In your MCP client, ask: ``` Show dot-ai status ``` You should see comprehensive system status including Kubernetes connectivity, vector database, and all available features.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vfarcic/dot-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server