Skip to main content
Glama
Dockerfile•1.34 kB
# Note: We use tag-only references (not SHA256 digests) to support multi-architecture builds. # Docker Buildx automatically selects the correct architecture-specific image for each platform. # Using SHA256 digests would pin to a single architecture and cause "exec format error" on other platforms. FROM node:22-slim # Build argument for package version ARG PACKAGE_VERSION=latest # Install kubectl (required for Kubernetes operations) RUN apt-get update && \ apt-get install -y curl && \ ARCH=$(dpkg --print-architecture) && \ curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/${ARCH}/kubectl" && \ chmod +x kubectl && \ mv kubectl /usr/local/bin/ && \ apt-get clean && \ rm -rf /var/lib/apt/lists/* # Install dot-ai globally RUN npm install -g @vfarcic/dot-ai@${PACKAGE_VERSION} # Set working directory WORKDIR /app # Create sessions directory RUN mkdir -p /app/sessions # Set default environment variables ENV DOT_AI_SESSION_DIR=/app/sessions ENV NODE_ENV=production # Transport defaults to stdio for backward compatibility # Set TRANSPORT_TYPE=http for HTTP mode ENV TRANSPORT_TYPE=stdio ENV PORT=3456 ENV HOST=0.0.0.0 # Expose port for HTTP transport (used when TRANSPORT_TYPE=http) EXPOSE 3456 # Default command to run dot-ai-mcp CMD ["dot-ai-mcp"]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vfarcic/dot-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server