Skip to main content
Glama

DevOps AI Toolkit

by vfarcic
dot.nu•3.43 kB
#!/usr/bin/env nu source scripts/kubernetes.nu source scripts/common.nu source scripts/crossplane.nu source scripts/ingress.nu source scripts/mcp.nu source scripts/anthropic.nu source scripts/kyverno.nu source scripts/atlas.nu source scripts/toolhive.nu def main [] {} def "main setup" [ --dot-ai-tag: string = "latest", --qdrant-run = true, --qdrant-tag: string = "latest", --crossplane-provider = none, # Which provider to use. Available options are `none`, `google`, `aws`, and `azure` --crossplane-db-config = true # Whether to apply DOT SQL Crossplane Configuration ] { rm --force .env # let provider = main get provider --providers ["azure" "google"] let anthropic_data = main get anthropic mut openai_key = "" if "OPENAI_API_KEY" in $env { $openai_key = $env.OPENAI_API_KEY } else { let value = input $"(ansi green_bold)Enter OpenAI API key:(ansi reset) " $openai_key = $value } let qdrant_image = $"ghcr.io/vfarcic/dot-ai-demo/qdrant:($qdrant_tag)" let dot_ai_image = $"ghcr.io/vfarcic/dot-ai:($dot_ai_tag)" $"export OPENAI_API_KEY=($openai_key)\n" | save --append .env $"export QDRANT_IMAGE=($qdrant_image)\n" | save --append .env $"export DOT_AI_IMAGE=($dot_ai_image)\n" | save --append .env docker image pull $qdrant_image docker image pull $dot_ai_image if $qdrant_run {( docker container run --detach --name qdrant --publish 6333:6333 $qdrant_image )} main create kubernetes kind cp kubeconfig-dot.yaml kubeconfig.yaml main apply ingress nginx --provider kind ( main apply crossplane --app-config true --db-config true --provider $crossplane_provider --db-config $crossplane_db_config ) main apply kyverno main apply atlas main apply toolhive kubectl create namespace a-team kubectl create namespace b-team kubectl apply --filename examples/policies main print source } def "main destroy" [] { main destroy kubernetes kind docker container rm qdrant --force docker volume rm qdrant-data } def "main build qdrant-image" [ version: string, --container: string = "qdrant", --repo: string = "ghcr.io/vfarcic/dot-ai-demo/qdrant" --latest-version: string = "latest" ] { print "Extracting data from running Qdrant container..." # Remove existing qdrant_storage directory if it exists at root if (ls . | where name == "qdrant_storage" and type == "dir" | length) > 0 { rm --recursive --force qdrant_storage } # Extract data from the running Qdrant container to root directory docker container cp $"($container):/qdrant/storage" ./qdrant_storage # Verify the data was extracted successfully if (ls . | where name == "qdrant_storage" and type == "dir" | length) == 0 { error "Failed to extract qdrant_storage from container" } print $"Building multi-arch qdrant image with version ($version)..." docker buildx build --platform linux/amd64,linux/arm64 --file Dockerfile-qdrant --build-arg $"VERSION=($version)" --tag $"($repo):($version)" --tag $"($repo):($latest_version)" --push . print "Cleaning up extracted data files..." rm --recursive --force qdrant_storage print $"Multi-arch image built and pushed successfully: ($repo):($version) and ($repo):latest" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vfarcic/dot-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server