import asyncio
from extractor import PDFExtractor
from recognizer import IMGRecognizer
async def main():
ext = PDFExtractor()
ext.run()
rec = IMGRecognizer()
await rec.image_understanding()
# Ask user for confirmation to create text embeddings
print("\n" + "=" * 60)
print("Confirm if you need to create text vector embeddings")
print("⚠️ This process may take approximately 20 minutes")
print("=" * 60)
while True:
choice = input("Create embeddings? (Enter Y or N): ").strip().upper()
if choice == 'Y':
print("Starting text vector embedding creation, please wait...")
from embedder import Embedder
em = Embedder()
em.precalculation()
print("Embedding creation completed!")
break
elif choice == 'N':
print("Skipping embedding creation step")
break
else:
print("Invalid input, please enter Y or N")
if __name__ == '__main__':
asyncio.run(main())
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/v587d/InsightsLibrary'
If you have feedback or need assistance with the MCP directory API, please join our Discord server