Skip to main content
Glama

Insights Knowledge Base MCP Server

main.py1.04 kB
import asyncio from extractor import PDFExtractor from recognizer import IMGRecognizer async def main(): ext = PDFExtractor() ext.run() rec = IMGRecognizer() await rec.image_understanding() # Ask user for confirmation to create text embeddings print("\n" + "=" * 60) print("Confirm if you need to create text vector embeddings") print("⚠️ This process may take approximately 20 minutes") print("=" * 60) while True: choice = input("Create embeddings? (Enter Y or N): ").strip().upper() if choice == 'Y': print("Starting text vector embedding creation, please wait...") from embedder import Embedder em = Embedder() em.precalculation() print("Embedding creation completed!") break elif choice == 'N': print("Skipping embedding creation step") break else: print("Invalid input, please enter Y or N") if __name__ == '__main__': asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/v587d/InsightsLibrary'

If you have feedback or need assistance with the MCP directory API, please join our Discord server