Skip to main content
Glama

Gemini Multimodal Audio Upload

CodeRabbit Pull Request Reviews

This project provides a Model Context Protocol (MCP) server that enables audio analysis using Google's Gemini models. It allows you to upload audio files, provide optional context (JSON), and receive detailed analysis based on your prompts.

Features

  • Audio Analysis: Upload and analyze audio files (WAV, MP3, etc.) using Google Gemini.

  • Multimodal Context: Support for providing additional context via JSON files or strings.

  • System Instructions: Ability to provide system instructions (e.g., "Gem" definitions) to guide the model's behavior.

  • MCP Server: Exposes functionality as an MCP tool, making it compatible with MCP clients like Claude Desktop or VS Code extensions.

Prerequisites

  • Python 3.10 or higher

  • A Google Cloud Project with the Gemini API enabled.

  • An API key for the Gemini API.

Installation

  1. Clone the repository:

    git clone https://github.com/unscene/gemini-audio-upload.git cd gemini-audio-upload
  2. Install dependencies with uv:

    uv sync

Configuration

  1. Create a .env file in the root directory:

    cp .env.example .env # If .env.example exists, otherwise create new
  2. Add your Google API key to the .env file:

    GOOGLE_API_KEY=your_api_key_here

Usage

Running the MCP Server

You can run the MCP server directly using uv:

uv run gemini_audio/mcp_server.py

However, it is typically run by an MCP client.

MCP Tool: analyze_audio

The server exposes a single tool: analyze_audio.

Arguments:

  • audio_path (string, required): The absolute path to the audio file you want to analyze.

  • prompt (string, optional): The prompt to guide the analysis. Default: "Describe this audio."

  • json_path (string, optional): Path to a JSON file containing context data.

  • json_context (string, optional): A JSON string containing context data (overrides json_path).

  • instruction_file (string, optional): Path to a text file containing system instructions.

  • model (string, optional): The Gemini model to use. Default: "gemini-1.5-pro".

Example Usage (Conceptual)

If you are using an MCP client, you might ask:

"Analyze the audio file at C:\path\to\recording.wav and tell me if the speaker sounds happy."

The client would call the analyze_audio tool with:

  • audio_path: C:\path\to\recording.wav

  • prompt: "Tell me if the speaker sounds happy."

Client Configuration

Claude Desktop App

To use this server with the Claude Desktop App, add the following configuration to your claude_desktop_config.json file.

Windows Location: %APPDATA%\Claude\claude_desktop_config.json macOS Location: ~/Library/Application Support/Claude/claude_desktop_config.json

{ "mcpServers": { "gemini-audio": { "command": "uv", "args": [ "--directory", "/absolute/path/to/gemini-audio-upload", "run", "gemini_audio/mcp_server.py" ], "env": { "GOOGLE_API_KEY": "your_api_key_here" } } } }

Note: Replace

VS Code (MCP Extension)

If you are using an MCP extension in VS Code (like the official "Model Context Protocol" extension), you can typically configure it in your VS Code settings.json:

"mcp.servers": { "gemini-audio": { "command": "uv", "args": [ "--directory", "C:\\absolute\\path\\to\\gemini-audio-upload", "run", "gemini_audio/mcp_server.py" ], "env": { "GOOGLE_API_KEY": "your_api_key_here" } } }

License

MIT

One-click Deploy
A
security – no known vulnerabilities
F
license - not found
A
quality - confirmed to work

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/unscene/gemini-audio-upload'

If you have feedback or need assistance with the MCP directory API, please join our Discord server