Skip to main content
Glama

run_task

Execute Union tasks using natural language by specifying project, domain, name, and inputs to automate workflows and applications.

Instructions

Run a task with natural language.

- Based on the prompt and inputs dictionary, determine the task to run - Format the inputs dictionary so that it matches the task function signature - Invoke the task Args: project: Project to run the task in. domain: Domain to run the task in. name: Name of the task to run. inputs: A dictionary of inputs to the task. Returns: A dictionary of outputs from the task.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
domainYes
inputsYes
nameYes
projectYes

Implementation Reference

  • Primary MCP tool handler and registration for 'run_task' in v2 server. Decorated with @mcp.tool() and @require_auth. Initializes Flyte and calls the resources helper.
    @mcp.tool() @require_auth async def run_task( name: str, inputs: dict, project: str, domain: str, ctx: Context, ) -> dict: ctx.info(f"Running task {name} in project {project} and domain {domain}") """Run a task with natural language. - Based on the prompt and inputs dictionary, determine the task to run - Format the inputs dictionary so that it matches the task function signature - Invoke the task Args: project: Project to run the task in. domain: Domain to run the task in. name: Name of the task to run. inputs: A dictionary of inputs to the task. Returns: A dictionary of outputs from the task. """ # Based on the prompt and inputs dictionary, determine the task _init(project, domain) return (await resources.run_task(name, inputs, project, domain)).to_dict()
  • Core helper function that fetches a Flyte task and runs it asynchronously, returning action details. Called by the v2 server handler.
    async def run_task( name: str, inputs: dict, project: str | None = None, domain: str | None = None, version: str | None = None, ) -> flyte.remote.ActionDetails: task = flyte.remote.Task.get( name=name, project=project, domain=domain, version=version, auto_version="latest" if version is None else None, ) run: flyte.remote.Run = flyte.run(task, **inputs) return await run.action.details()
  • v1 MCP tool handler and registration for 'run_task'. Directly fetches and executes task using union remote API.
    @mcp.tool() @require_auth def run_task( name: str, inputs: dict, project: str, domain: str, ctx: Context, ) -> dict: ctx.info(f"Running task {name} in project {project} and domain {domain}") """Run a task with natural language. - Based on the prompt and inputs dictionary, determine the task to run - Format the inputs dictionary so that it matches the task function signature - Invoke the task Args: project: Project to run the task in. domain: Domain to run the task in. name: Name of the task to run. inputs: A dictionary of inputs to the task. Returns: A dictionary of outputs from the task. """ # Based on the prompt and inputs dictionary, determine the task remote = _remote(project, domain) task = remote.fetch_task(project=project, domain=domain, name=name) execution = remote.execute(task, inputs, project=project, domain=domain) return resources.proto_to_json(execution.to_flyte_idl())

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/unionai-oss/union-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server