Skip to main content
Glama

model_updateModelStyling

Update the CSS styling for an existing model by specifying its name and providing the new CSS string. Modify Anki flashcard appearance using the Anki-MCP server.

Instructions

Modifies the CSS styling of an existing model by name.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
modelYesModel object. Must include 'name' (model name) and 'css' (the new CSS string).

Implementation Reference

  • The core handler function for the 'model_updateModelStyling' tool (prefixed by service namespace). It validates input via Pydantic and proxies the call to AnkiConnect API.
    @model_mcp.tool( name="updateModelStyling", description="Modifies the CSS styling of an existing model by name.", ) async def update_model_styling_tool( model: Annotated[ Dict[str, Any], Field( description="Model object. Must include 'name' (model name) and 'css' (the new CSS string)." ), ], ) -> None: return await anki_call("updateModelStyling", model=model)
  • Registers the model service (including updateModelStyling tool) into the main Anki MCP server under the 'model_' namespace prefix.
    await anki_mcp.import_server("model", model_mcp)
  • Shared helper function used by all tool handlers to make HTTP requests to the AnkiConnect API backend.
    async def anki_call(action: str, **params: Any) -> Any: async with httpx.AsyncClient() as client: payload = {"action": action, "version": 6, "params": params} result = await client.post(ANKICONNECT_URL, json=payload) result.raise_for_status() result_json = result.json() error = result_json.get("error") if error: raise Exception(f"AnkiConnect error for action '{action}': {error}") response = result_json.get("result") if "result" in result_json: return response return result_json
  • Pydantic-based input schema definition for the tool, specifying the expected 'model' parameter structure.
    model: Annotated[ Dict[str, Any], Field( description="Model object. Must include 'name' (model name) and 'css' (the new CSS string)." ), ], ) -> None:

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ujisati/anki-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server