mcp-cortellis

by uh-joan
Verified
# Cortellis MCP API Reference ## Authentication The Cortellis MCP server uses token-based authentication. You must provide a base64 encoded token that combines your Cortellis username and password in the format `username:password`. ### Setting Up Authentication 1. Generate your token: ```bash # Unix/macOS echo -n "your_username:your_password" | base64 # Windows PowerShell [Convert]::ToBase64String([Text.Encoding]::UTF8.GetBytes("your_username:your_password")) ``` 2. Set the environment variable: ```bash export CORTELLIS_AUTH=your_base64_token ``` Or add to your `.env` file: ``` CORTELLIS_AUTH=your_base64_token ``` ## Functions ### search_drugs ```python def search_drugs( query: str = None, company: str = None, indication: str = None, action: str = None, phase: str = None, phase_terminated: str = None, technology: str = None, drug_name: str = None, country: str = None, offset: int = 0 ) -> dict ``` Search for drugs in the Cortellis database. #### Authentication: Requires the `CORTELLIS_AUTH` environment variable to be set with a valid base64 encoded token. #### Parameters: - `query`: Raw search query (optional) - `company`: Company developing the drug - `indication`: Active indications (e.g., "obesity") - `action`: Target specific action (e.g., "glucagon") - `phase`: Overall highest development status - `phase_terminated`: Last phase before NDR/Discontinued - `technology`: Technologies used (e.g., "small molecule") - `drug_name`: Name of the drug - `country`: Country of development - `offset`: Starting position in results (default: 0) #### Returns: Dictionary containing search results and metadata. ### explore_ontology ```python def explore_ontology( term: str = None, category: str = None, action: str = None, indication: str = None, company: str = None, drug_name: str = None, target: str = None, technology: str = None ) -> dict ``` Explore ontology/taxonomy terms in the Cortellis database. #### Authentication: Requires the `CORTELLIS_AUTH` environment variable to be set with a valid base64 encoded token. #### Parameters: - `term`: Generic search term - `category`: Category to search within - `action`: Target specific action - `indication`: Active indications - `company`: Company name - `drug_name`: Drug name - `target`: Drug target - `technology`: Technology type #### Returns: Dictionary containing matching ontology terms.