Skip to main content
Glama

MCP Atlassian

by uchinx
MIT License
  • Apple
  • Linux
space.py1.5 kB
""" Confluence space models. This module provides Pydantic models for Confluence spaces. """ import logging from typing import Any from ..base import ApiModel from ..constants import CONFLUENCE_DEFAULT_ID, EMPTY_STRING, UNKNOWN logger = logging.getLogger(__name__) class ConfluenceSpace(ApiModel): """ Model representing a Confluence space. """ id: str = CONFLUENCE_DEFAULT_ID key: str = EMPTY_STRING name: str = UNKNOWN type: str = "global" # "global", "personal", etc. status: str = "current" # "current", "archived", etc. @classmethod def from_api_response( cls, data: dict[str, Any], **kwargs: Any ) -> "ConfluenceSpace": """ Create a ConfluenceSpace from a Confluence API response. Args: data: The space data from the Confluence API Returns: A ConfluenceSpace instance """ if not data: return cls() return cls( id=str(data.get("id", CONFLUENCE_DEFAULT_ID)), key=data.get("key", EMPTY_STRING), name=data.get("name", UNKNOWN), type=data.get("type", "global"), status=data.get("status", "current"), ) def to_simplified_dict(self) -> dict[str, Any]: """Convert to simplified dictionary for API response.""" return { "key": self.key, "name": self.name, "type": self.type, "status": self.status, }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/uchinx/mcp-atlassian'

If you have feedback or need assistance with the MCP directory API, please join our Discord server