Skip to main content
Glama

MCP E-commerce Demo

by uberr2000
README.md5.98 kB
# MCP Demo Project A Laravel-based Model Context Protocol (MCP) demonstration project featuring an e-commerce order management system with AI-powered chat functionality using OpenAI. ## Features - **Order Management**: Display and manage customer orders with pagination - **Product Catalog**: Browse supermarket products (sodas, chips, ice cream, etc.) - **AI Chat Interface**: Query order and product data using natural language in Traditional Chinese - **Database Integration**: SQLite database with seeded sample data - **Modern UI**: Responsive design using Tailwind CSS ## Project Structure ### Models - **Product**: Represents supermarket items with name, price, description, stock, and category - **Order**: Customer orders with transaction ID, customer name, amount, status, and product relationships ### Database Schema #### Products Table - `id` - Primary key - `name` - Product name (Traditional Chinese) - `description` - Product description - `price` - Product price (HKD) - `stock_quantity` - Available stock - `category` - Product category (飲料, 零食, 雪糕) - `created_at`, `updated_at` - Timestamps #### Orders Table - `id` - Primary key - `transaction_id` - Unique transaction identifier (TXN######) - `name` - Customer name (Traditional Chinese) - `amount` - Order total amount - `status` - Order status (pending, processing, completed, cancelled, refunded) - `product_id` - Foreign key to products table - `quantity` - Quantity ordered - `created_at`, `updated_at` - Timestamps ### Sample Data - **10 Products**: Supermarket items including: - 可口可樂 (Coca-Cola) - 樂事薯片 (Lay's Chips) - 哈根達斯雪糕 (Häagen-Dazs Ice Cream) - 百事可樂 (Pepsi) - And more... - **500 Orders**: Randomly generated orders with: - Unique transaction IDs - Chinese customer names - Random products and quantities - Various order statuses - Realistic timestamps ## AI Chat Functionality The AI chat interface uses OpenAI's GPT-3.5-turbo model to answer queries about orders and products. The system: 1. **Processes natural language queries** in Traditional Chinese 2. **Searches relevant data** based on keywords and patterns 3. **Provides context** to the AI model with retrieved data 4. **Returns intelligent responses** about orders and products ### Example Queries - "顯示所有已完成的訂單" (Show all completed orders) - "TXN000001 的訂單詳情" (Details for order TXN000001) - "陳大明的所有訂單" (All orders for customer 陳大明) - "有什麼飲料產品?" (What beverage products are available?) ## Installation & Setup ### Prerequisites - PHP 8.1+ - Composer - Node.js & npm (optional, for asset compilation) ### Installation Steps 1. **Clone the repository** ```bash git clone <repository-url> cd mcp_demo ``` 2. **Install dependencies** ```bash composer install ``` 3. **Environment setup** ```bash cp .env.example .env php artisan key:generate ``` 4. **Configure OpenAI API** Add your OpenAI API key to `.env`: ``` OPENAI_API_KEY=your_openai_api_key_here ``` 5. **Database setup** The project is configured to use SQLite by default: ```bash php artisan migrate php artisan db:seed ``` 6. **Start the server** ```bash php artisan serve ``` 7. **Access the application** Open your browser and navigate to `http://127.0.0.1:8000` ## Configuration ### Database Configuration **SQLite (Default)** ```env DB_CONNECTION=sqlite ``` **MySQL (Alternative)** ```env DB_CONNECTION=mysql DB_HOST=127.0.0.1 DB_PORT=3306 DB_DATABASE=mcp_demo DB_USERNAME=root DB_PASSWORD=your_password ``` For MySQL, create the database first: ```sql CREATE DATABASE mcp_demo CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci; ``` ### OpenAI Configuration ```env OPENAI_API_KEY=your_openai_api_key_here ``` ## Usage ### Main Dashboard - View paginated list of orders with details - Browse product catalog - Use AI chat to query data ### AI Chat Interface The chat interface supports various query types: - Order lookup by transaction ID - Customer order history - Product searches - Status-based filtering - General inquiries about the data ### API Endpoints - `GET /` - Main dashboard - `POST /chat` - AI chat endpoint ## Technical Implementation ### MCP Integration The project demonstrates MCP concepts by: 1. **Data Retrieval**: Structured database queries based on AI prompts 2. **Context Building**: Formatting retrieved data for AI consumption 3. **Response Generation**: Using OpenAI to generate intelligent responses 4. **User Interface**: Real-time chat interface for natural language queries ### Technologies Used - **Backend**: Laravel 12, PHP 8.1+ - **Database**: SQLite/MySQL - **AI**: OpenAI GPT-3.5-turbo - **Frontend**: Blade templates, Tailwind CSS, jQuery - **HTTP Client**: OpenAI PHP Client ## Development ### Adding New Features 1. Create new models/controllers as needed 2. Update database migrations and seeders 3. Extend the chat functionality in `ChatController` 4. Add new UI components to the dashboard ### Testing ```bash php artisan test ``` ### Code Style ```bash ./vendor/bin/pint ``` ## Troubleshooting ### Database Issues - Ensure SQLite is enabled in PHP - For MySQL, check connection credentials - Run `php artisan config:clear` after configuration changes ### OpenAI Issues - Verify API key is correct - Check API quota and usage limits - Ensure internet connectivity ### Performance - Consider adding database indexes for large datasets - Implement caching for frequently accessed data - Use Laravel queues for heavy AI operations ## License This project is open-sourced software licensed under the [MIT license](https://opensource.org/licenses/MIT). ## Contributing 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Submit a pull request ## Support For issues or questions, please create an issue in the repository or contact the development team.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/uberr2000/mcp_demo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server