# knowledge_completion.py
import asyncio
import re
from typing import Dict, List, Any, Optional, Protocol
from abc import ABC, abstractmethod
class KnowledgeBase(Protocol):
"""知识库接口协议"""
async def query_fact(self, entity: str, relation: str, context: str = "") -> Optional[str]:
"""
查询事实信息
Args:
entity: 实体名称
relation: 关系类型(如 "location", "country", "capital")
context: 上下文信息
Returns:
查询结果,如果没有找到返回None
"""
...
async def verify_fact(self, subject: str, predicate: str, object: str) -> Dict[str, Any]:
"""
验证事实的正确性
Args:
subject: 主语
predicate: 谓语/关系
object: 宾语
Returns:
验证结果,包含is_correct, confidence, correct_value等字段
"""
...
class ConflictResolver:
"""语义冲突解决器"""
def __init__(self, knowledge_base: Optional[KnowledgeBase] = None):
self.knowledge_base = knowledge_base or DefaultKnowledgeBase()
async def resolve_conflicts(self, data: str, issues: List[str]) -> tuple[str, List[str]]:
"""
解决语义冲突
Args:
data: 原始数据
issues: 检测到的问题列表
Returns:
(修正后的数据, 修正说明列表)
"""
enhanced_data = data
corrections = []
for issue in issues:
if "冲突" in issue:
correction_result = await self._resolve_single_conflict(enhanced_data, issue)
if correction_result:
enhanced_data = correction_result["corrected_data"]
corrections.append(correction_result["correction_message"])
return enhanced_data, corrections
async def _resolve_single_conflict(self, data: str, issue: str) -> Optional[Dict[str, str]]:
"""解决单个冲突"""
# 解析冲突类型和涉及的实体
conflict_info = self._parse_conflict_issue(issue)
if not conflict_info:
return None
# 使用知识库验证和修正
verification = await self.knowledge_base.verify_fact(
conflict_info["subject"],
conflict_info["predicate"],
conflict_info["object"]
)
if not verification["is_correct"] and verification["correct_value"]:
# 执行修正
corrected_data = self._apply_correction(
data,
conflict_info,
verification["correct_value"]
)
return {
"corrected_data": corrected_data,
"correction_message": f"修正{conflict_info['conflict_type']}:{verification['correction_message']}"
}
return None
def _parse_conflict_issue(self, issue: str) -> Optional[Dict[str, str]]:
"""解析冲突问题描述"""
# 地理冲突模式
if "巴黎" in issue and "德国" in issue:
return {
"conflict_type": "地理错误",
"subject": "巴黎",
"predicate": "位于",
"object": "德国"
}
elif "北京" in issue and "日本" in issue:
return {
"conflict_type": "地理错误",
"subject": "北京",
"predicate": "位于",
"object": "日本"
}
return None
def _apply_correction(self, data: str, conflict_info: Dict[str, str], correct_value: str) -> str:
"""应用修正"""
corrected_data = data
subject = conflict_info["subject"]
incorrect_object = conflict_info["object"]
# 替换错误的表述
patterns_to_fix = [
f"{subject}是{incorrect_object}城市",
f"{incorrect_object}{subject}",
f"{subject}位于{incorrect_object}",
f"{subject}在{incorrect_object}"
]
correct_patterns = [
f"{subject}是{correct_value}城市",
f"{correct_value}{subject}",
f"{subject}位于{correct_value}",
f"{subject}在{correct_value}"
]
for i, pattern in enumerate(patterns_to_fix):
if pattern in corrected_data:
corrected_data = corrected_data.replace(pattern, correct_patterns[i])
return corrected_data
class DefaultKnowledgeBase:
"""默认知识库实现"""
def __init__(self):
# 基础地理知识
self.geographic_facts = {
"巴黎": {"country": "法国", "continent": "欧洲"},
"北京": {"country": "中国", "continent": "亚洲"},
"东京": {"country": "日本", "continent": "亚洲"},
"伦敦": {"country": "英国", "continent": "欧洲"},
"纽约": {"country": "美国", "continent": "北美洲"},
"柏林": {"country": "德国", "continent": "欧洲"}
}
async def query_fact(self, entity: str, relation: str, context: str = "") -> Optional[str]:
"""查询事实信息"""
if relation == "country" and entity in self.geographic_facts:
return self.geographic_facts[entity]["country"]
elif relation == "continent" and entity in self.geographic_facts:
return self.geographic_facts[entity]["continent"]
return None
async def verify_fact(self, subject: str, predicate: str, object: str) -> Dict[str, Any]:
"""验证事实正确性"""
if predicate in ["位于", "在", "属于"] and subject in self.geographic_facts:
correct_country = self.geographic_facts[subject]["country"]
is_correct = (object == correct_country)
return {
"is_correct": is_correct,
"confidence": 0.92 if is_correct else 0.88, # 根据正确性动态调整
"correct_value": correct_country if not is_correct else object,
"correction_message": f"{subject}属于{correct_country},不是{object}" if not is_correct else ""
}
# 默认情况:无法验证
return {
"is_correct": True, # 保守策略:如果不确定就不修改
"confidence": 0.1,
"correct_value": None,
"correction_message": ""
}
class KnowledgeCompletor:
"""知识补全,预留接口,集成论文中的知识补全模型"""
def __init__(self, knowledge_base: Optional[KnowledgeBase] = None):
# 在这里初始化知识补全模型
# self.completion_model = load_completion_model()
# self.external_kb = load_external_knowledge_base()
self.conflict_resolver = ConflictResolver(knowledge_base)
self.knowledge_base = knowledge_base or DefaultKnowledgeBase()
async def complete_knowledge(self, raw_data: str, quality_result: Dict[str, Any]) -> Dict[str, Any]:
"""
对低质量数据进行知识补全与优化
Args:
raw_data: 原始数据
quality_result: 数据质量评估结果
Returns:
知识补全结果
"""
enhanced_data = raw_data
completions = []
corrections = []
confidence = 0.8 # 默认置信度
# 根据质量评估结果进行相应的补全
issues = quality_result.get("issues", [])
# 1. 完整性补全
if "实体信息不足" in issues:
enhanced_data, entity_completions = await self._complete_entities(enhanced_data)
completions.extend(entity_completions)
if "缺少关系信息" in issues:
enhanced_data, relation_completions = await self._complete_relations(enhanced_data)
completions.extend(relation_completions)
# 2. 一致性修正
if any("冲突" in issue for issue in issues):
enhanced_data, conflict_corrections = await self._correct_conflicts(enhanced_data, issues)
corrections.extend(conflict_corrections)
# 3. 格式规范化
if any("格式" in issue for issue in issues):
enhanced_data, format_corrections = await self._normalize_format(enhanced_data)
corrections.extend(format_corrections)
# 4. 隐性知识推理 (预留接口)
enhanced_data, implicit_knowledge = await self._infer_implicit_knowledge(enhanced_data)
completions.extend(implicit_knowledge)
# 计算最终置信度
confidence = self._calculate_confidence(completions, corrections)
return {
"enhanced_data": enhanced_data,
"completions": completions,
"corrections": corrections,
"confidence": confidence
}
async def _complete_entities(self, data: str) -> tuple[str, List[str]]:
"""补全实体信息"""
enhanced_data = data
completions = []
# 预留:这里可以调用外部知识库或模型进行更复杂的实体补全
# enhanced_data, model_completions = await self._model_based_entity_completion(data)
# completions.extend(model_completions)
return enhanced_data, completions
async def _complete_relations(self, data: str) -> tuple[str, List[str]]:
"""补全关系信息"""
enhanced_data = data
completions = []
# 移除自动关系推断,避免添加不准确的关系信息
# 保持原始输入的准确性
return enhanced_data, completions
async def _correct_conflicts(self, data: str, issues: List[str]) -> tuple[str, List[str]]:
"""修正语义冲突 - 使用可配置的冲突解决器"""
return await self.conflict_resolver.resolve_conflicts(data, issues)
async def _normalize_format(self, data: str) -> tuple[str, List[str]]:
"""格式规范化"""
enhanced_data = data
corrections = []
# 添加标点符号
if not re.search(r'[。!?.]$', enhanced_data.strip()):
enhanced_data += "。"
corrections.append("添加句号")
# 规范化空格
enhanced_data = re.sub(r'\s+', ' ', enhanced_data)
enhanced_data = enhanced_data.strip()
return enhanced_data, corrections
async def _infer_implicit_knowledge(self, data: str) -> tuple[str, List[str]]:
"""推理隐性知识 - 预留接口"""
enhanced_data = data
implicit_knowledge = []
# 预留:这里可以集成论文中的隐性知识推理模型
# 简化示例:基于常识的推理
if "CEO" in data:
implicit_knowledge.append("隐性知识:CEO通常负责公司战略决策")
if "大学" in data:
implicit_knowledge.append("隐性知识:大学是教育机构")
return enhanced_data, implicit_knowledge
def _extract_entities(self, data: str) -> List[str]:
"""提取实体(复用数据质量评估中的方法)"""
entities = []
# 人名模式
person_pattern = r'[张王李赵刘陈杨黄周吴徐孙胡朱高林何郭马罗梁宋郑谢韩唐冯于董萧程曹袁邓许傅沈曾彭吕苏卢蒋蔡贾丁魏薛叶阎余潘杜戴夏钟汪田任姜范方石姚谭廖邹熊金陆郝孔白崔康毛邱秦江史顾侯邵孟龙万段漕钱汤尹黎易常武乔贺赖龚文][一-龥]{1,3}'
persons = re.findall(person_pattern, data)
entities.extend(persons)
# 地名模式
place_pattern = r'[一-龥]{2,}[市县区镇村]|[一-龥]{2,}[省州]'
places = re.findall(place_pattern, data)
entities.extend(places)
# 组织名称
org_pattern = r'[一-龥]{2,}[公司企业集团组织机构大学学院]'
orgs = re.findall(org_pattern, data)
entities.extend(orgs)
return list(set(entities))
def _calculate_confidence(self, completions: List[str], corrections: List[str]) -> float:
"""计算补全结果的置信度"""
base_confidence = 0.8
# 根据补全和修正的数量调整置信度
completion_penalty = len(completions) * 0.05 # 补全越多,置信度略微降低
correction_bonus = len(corrections) * 0.1 # 修正错误提高置信度
confidence = base_confidence - completion_penalty + correction_bonus
# 确保置信度在合理范围内
confidence = max(0.1, min(1.0, confidence))
return round(confidence, 3)
# 预留方法:可以在这里添加更复杂的知识补全模型接口
async def _model_based_completion(self, data: str) -> Dict[str, Any]:
"""基于模型的知识补全 - 预留接口"""
# 这里可以集成:
# 1. 大语言模型 (如 GPT, BERT等)
# 2. 知识图谱嵌入模型
# 3. 专门的知识补全模型
pass
async def _external_kb_query(self, entity: str, relation: str = "general", context: str = "") -> Optional[str]:
"""外部知识库查询 - 使用可配置的知识库接口"""
# 使用配置的知识库进行查询
result = await self.knowledge_base.query_fact(entity, relation, context)
return result
async def _verify_fact_with_kb(self, subject: str, predicate: str, object: str) -> Dict[str, Any]:
"""使用知识库验证事实"""
return await self.knowledge_base.verify_fact(subject, predicate, object)
# 扩展知识库示例
class WikidataKnowledgeBase:
"""Wikidata知识库接口示例 - 预留实现"""
async def query_fact(self, entity: str, relation: str, context: str = "") -> Optional[str]:
"""
查询Wikidata中的事实信息
实际实现中可以调用Wikidata API
"""
# 预留:实际实现中调用Wikidata SPARQL API
# sparql_query = f"SELECT ?value WHERE {{ ?entity rdfs:label '{entity}'@zh . ?entity {relation} ?value . }}"
# result = await self._execute_sparql_query(sparql_query)
# return result
pass
async def verify_fact(self, subject: str, predicate: str, object: str) -> Dict[str, Any]:
"""验证事实正确性"""
# 预留:实际实现中查询Wikidata验证事实
pass
class LLMKnowledgeBase:
"""基于大语言模型的知识库示例 - 预留实现"""
def __init__(self, llm_client=None):
self.llm_client = llm_client
async def query_fact(self, entity: str, relation: str, context: str = "") -> Optional[str]:
"""
使用LLM查询事实信息
"""
# 预留:实际实现中调用LLM API
# prompt = f"请回答关于{entity}的{relation}信息。上下文:{context}"
# response = await self.llm_client.complete(prompt)
# return self._extract_fact_from_response(response)
pass
async def verify_fact(self, subject: str, predicate: str, object: str) -> Dict[str, Any]:
"""使用LLM验证事实正确性"""
# 预留:实际实现中使用LLM进行事实验证
pass
# 使用示例
"""
# 1. 使用默认知识库
completor = KnowledgeCompletor()
# 2. 使用自定义知识库
custom_kb = WikidataKnowledgeBase()
completor = KnowledgeCompletor(knowledge_base=custom_kb)
# 3. 使用LLM知识库
llm_kb = LLMKnowledgeBase(llm_client=your_llm_client)
completor = KnowledgeCompletor(knowledge_base=llm_kb)
# 4. 组合多个知识库
class CombinedKnowledgeBase:
def __init__(self, primary_kb, fallback_kb):
self.primary_kb = primary_kb
self.fallback_kb = fallback_kb
async def query_fact(self, entity: str, relation: str, context: str = "") -> Optional[str]:
result = await self.primary_kb.query_fact(entity, relation, context)
if result is None:
result = await self.fallback_kb.query_fact(entity, relation, context)
return result
async def verify_fact(self, subject: str, predicate: str, object: str) -> Dict[str, Any]:
result = await self.primary_kb.verify_fact(subject, predicate, object)
if result["confidence"] < 0.5:
fallback_result = await self.fallback_kb.verify_fact(subject, predicate, object)
if fallback_result["confidence"] > result["confidence"]:
return fallback_result
return result
combined_kb = CombinedKnowledgeBase(WikidataKnowledgeBase(), DefaultKnowledgeBase())
completor = KnowledgeCompletor(knowledge_base=combined_kb)
"""