Skip to main content
Glama
schemas.py1.24 kB
from pydantic import BaseModel from typing import Any # Tavily Search Response Schema class SearchImage(BaseModel): url: str description: str | None = None class SearchResult(BaseModel): title: str url: str content: str score: float published_date: str | None = None raw_content: str | None = None class TavilySearchResponse(BaseModel): query: str answer: str | None = None images: list[str | SearchImage] | None = None results: list[SearchResult] response_time: float auto_parameters: dict[str, Any] | None = None # Tavily Extract Response Schema class ExtractResult(BaseModel): url: str raw_content: str images: list[str] class ExtractFailedResult(BaseModel): url: str error: str class TavilyExtractResponse(BaseModel): results: list[ExtractResult] failed_results: list[ExtractFailedResult] response_time: float # Tavily Crawl Response Schema class CrawlResult(BaseModel): url: str raw_content: str class TavilyCrawlResponse(BaseModel): base_url: str results: list[CrawlResult] response_time: float # Tavily Map Response Schema class TavilyMapResponse(BaseModel): base_url: str results: list[str] response_time: float

Implementation Reference

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tsmndev/tavily-mcp-python'

If you have feedback or need assistance with the MCP directory API, please join our Discord server