README.md•4.91 kB
# System Architecture
> 🚧 **Documentation In Progress**
>
> This documentation is being actively developed. More details will be added soon.
## Overview
This document provides a comprehensive overview of the MCP Codebase Insight system architecture. For detailed workflow information, please see the [Workflows Documentation](../workflows/README.md).
## Architecture Components
### Core Systems
- Vector Store System
- Knowledge Base
- Task Management
- Health Monitoring
- Error Handling
- Metrics Collection
- Cache Management
### Documentation
- ADR Management
- Documentation Tools
- API Documentation
### Testing
- Test Framework
- SSE Testing
- Integration Testing
## Detailed Documentation
- [Core Components](../components/README.md)
- [API Reference](../api/README.md)
- [Development Guide](../development/README.md)
## System Overview
This document provides a comprehensive overview of the MCP Codebase Insight system architecture, focusing on system interactions, dependencies, and design considerations.
## Core Systems
### 1. Vector Store System (`src/mcp_codebase_insight/core/vector_store.py`)
- **Purpose**: Manages code embeddings and semantic search capabilities
- **Key Components**:
- Qdrant integration for vector storage
- Embedding generation and management
- Search optimization and caching
- **Integration Points**:
- Knowledge Base for semantic understanding
- Cache Management for performance optimization
- Health Monitoring for system status
### 2. Knowledge Base (`src/mcp_codebase_insight/core/knowledge.py`)
- **Purpose**: Central repository for code insights and relationships
- **Key Components**:
- Pattern detection and storage
- Relationship mapping
- Semantic analysis
- **Feedback Loops**:
- Updates vector store with new patterns
- Receives feedback from code analysis
- Improves pattern detection over time
### 3. Task Management (`src/mcp_codebase_insight/core/tasks.py`)
- **Purpose**: Handles async operations and job scheduling
- **Key Components**:
- Task scheduling and prioritization
- Progress tracking
- Resource management
- **Bottleneck Mitigation**:
- Task queuing strategies
- Resource allocation
- Error recovery
### 4. Health Monitoring (`src/mcp_codebase_insight/core/health.py`)
- **Purpose**: System health and performance monitoring
- **Key Components**:
- Component status tracking
- Performance metrics
- Alert system
- **Feedback Mechanisms**:
- Real-time status updates
- Performance optimization triggers
- System recovery procedures
### 5. Error Handling (`src/mcp_codebase_insight/core/errors.py`)
- **Purpose**: Centralized error management
- **Key Components**:
- Error classification
- Recovery strategies
- Logging and reporting
- **Resilience Features**:
- Graceful degradation
- Circuit breakers
- Error propagation control
## System Interactions
### Critical Paths
1. **Code Analysis Flow**:
```mermaid
sequenceDiagram
participant CA as Code Analysis
participant KB as Knowledge Base
participant VS as Vector Store
participant CM as Cache
CA->>VS: Request embeddings
VS->>CM: Check cache
CM-->>VS: Return cached/null
VS->>KB: Get patterns
KB-->>VS: Return patterns
VS-->>CA: Return analysis
```
2. **Health Monitoring Flow**:
```mermaid
sequenceDiagram
participant HM as Health Monitor
participant CS as Component State
participant TM as Task Manager
participant EH as Error Handler
HM->>CS: Check states
CS->>TM: Verify tasks
TM-->>CS: Task status
CS-->>HM: System status
HM->>EH: Report issues
```
## Performance Considerations
### Caching Strategy
- Multi-level caching (memory and disk)
- Cache invalidation triggers
- Cache size management
### Scalability Points
1. Vector Store:
- Horizontal scaling capabilities
- Batch processing optimization
- Search performance tuning
2. Task Management:
- Worker pool management
- Task prioritization
- Resource allocation
## Error Recovery
### Failure Scenarios
1. Vector Store Unavailable:
- Fallback to cached results
- Graceful degradation of search
- Automatic reconnection
2. Task Overload:
- Dynamic task throttling
- Priority-based scheduling
- Resource reallocation
## System Evolution
### Extension Points
1. Knowledge Base:
- Plugin system for new patterns
- Custom analyzers
- External integrations
2. Monitoring:
- Custom metrics
- Alert integrations
- Performance profiling
## Next Steps
1. **Documentation Needs**:
- Detailed component interaction guides
- Performance tuning documentation
- Deployment architecture guides
2. **System Improvements**:
- Enhanced caching strategies
- More robust error recovery
- Better performance monitoring