# Qdrant Setup Guide
## Overview
This document outlines the setup and maintenance procedures for the Qdrant vector database instance required for running tests and development.
## Prerequisites
- Docker installed and running
- Port 6333 available on localhost
- Python 3.8+ with pip
## Setup Options
### Option 1: Docker Container (Recommended for Development)
```bash
# Pull the latest Qdrant image
docker pull qdrant/qdrant:latest
# Run Qdrant container
docker run -d \
--name mcp-qdrant \
-p 6333:6333 \
-v $(pwd)/qdrant_data:/qdrant/storage \
qdrant/qdrant
# Verify the instance is running
curl http://localhost:6333/health
```
### Option 2: Pre-existing Instance
If using a pre-existing Qdrant instance:
1. Ensure it's accessible at `localhost:6333`
2. Verify health status
3. Configure environment variables if needed:
```bash
export QDRANT_HOST=localhost
export QDRANT_PORT=6333
```
## Health Check
```python
from qdrant_client import QdrantClient
client = QdrantClient(host="localhost", port=6333)
health = client.health()
print(f"Qdrant health status: {health}")
```
## Maintenance
- Regular health checks are automated in CI/CD pipeline
- Database backups are stored in `./qdrant_data`
- Version updates should be coordinated with the team
## Troubleshooting
1. If container fails to start:
```bash
# Check logs
docker logs mcp-qdrant
# Verify port availability
lsof -i :6333
```
2. If connection fails:
```bash
# Restart container
docker restart mcp-qdrant
# Check container status
docker ps -a | grep mcp-qdrant
```
## Responsible Parties
- Primary maintainer: DevOps Team
- Documentation updates: Development Team Lead
- Testing coordination: QA Team Lead
## Version Control
- Document version: 1.0
- Last updated: 2025-03-24
- Next review: 2025-06-24
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-codebase-insight'
If you have feedback or need assistance with the MCP directory API, please join our Discord server