Skip to main content
Glama

MCP Codebase Insight

by tosin2013
code-analysis.md6.32 kB
# Code Analysis MCP Codebase Insight provides powerful code analysis capabilities to help you understand patterns, identify issues, and improve code quality. ## Overview The code analysis feature: - Identifies common design patterns - Detects potential issues and anti-patterns - Suggests improvements and optimizations - Analyzes code relationships and dependencies - Provides semantic understanding of code ## Features ### 1. Pattern Detection The system can identify common software design patterns: ```python # Example: Factory Pattern Detection class Creator: def factory_method(self): pass def some_operation(self): product = self.factory_method() result = product.operation() return result class ConcreteCreator(Creator): def factory_method(self): return ConcreteProduct() ``` Analysis will identify this as a Factory Pattern implementation. ### 2. Code Quality Analysis Identifies potential issues and suggests improvements: - Code complexity metrics - Duplicate code detection - Dead code identification - Resource management issues - Error handling patterns ### 3. Dependency Analysis Maps relationships between code components: ```python # Example: Analyzing imports and dependencies response = await client.post( "http://localhost:3000/api/analyze/dependencies", json={ "file_path": "src/main.py", "depth": 2 # How deep to analyze dependencies } ) dependencies = response.json() ``` ### 4. Semantic Analysis Understands code meaning and context: ```python # Example: Semantic code search response = await client.post( "http://localhost:3000/api/analyze/semantic", json={ "query": "find all functions that handle user authentication", "scope": ["src/auth/", "src/users/"] } ) matches = response.json() ``` ## Usage ### Basic Analysis ```python import httpx async with httpx.AsyncClient() as client: response = await client.post( "http://localhost:3000/api/analyze", json={ "code": your_code, "language": "python", "analysis_type": ["patterns", "quality", "dependencies"] } ) results = response.json() print(results["patterns"]) print(results["quality_issues"]) print(results["dependencies"]) ``` ### Continuous Analysis Set up continuous analysis in your CI/CD pipeline: ```bash # Example: GitHub Actions workflow curl -X POST http://localhost:3000/api/analyze/ci \ -H "Content-Type: application/json" \ -d '{ "repository": "owner/repo", "branch": "main", "commit": "sha", "diff_only": true }' ``` ### Batch Analysis Analyze multiple files or entire directories: ```python # Analyze entire directory response = await client.post( "http://localhost:3000/api/analyze/batch", json={ "path": "src/", "include": ["*.py", "*.js"], "exclude": ["*_test.py", "node_modules"], "analysis_type": ["patterns", "quality"] } ) ``` ## Configuration ### Analysis Settings ```yaml analysis: # Pattern detection settings patterns: confidence_threshold: 0.8 min_pattern_size: 5 # Quality analysis settings quality: max_complexity: 15 max_line_length: 100 enable_type_checking: true # Dependency analysis settings dependencies: max_depth: 3 include_external: true # Semantic analysis settings semantic: model: "code-bert-base" similarity_threshold: 0.7 ``` ### Custom Rules Create custom analysis rules: ```python # Example: Custom pattern rule { "name": "custom_singleton", "pattern": { "type": "class", "properties": { "has_private_constructor": true, "has_static_instance": true } }, "message": "Possible Singleton pattern detected" } ``` ## Integration ### IDE Integration The analysis features can be integrated with popular IDEs: - VS Code Extension - JetBrains Plugin - Vim/Neovim Plugin ### CI/CD Integration Example GitHub Actions workflow: ```yaml name: Code Analysis on: [push, pull_request] jobs: analyze: runs-on: ubuntu-latest steps: - uses: actions/checkout@v2 - name: Run MCP Analysis run: | curl -X POST http://localhost:3000/api/analyze/ci \ -H "Content-Type: application/json" \ -d '{ "repository": "${{ github.repository }}", "commit": "${{ github.sha }}", "diff_only": true }' ``` ## Best Practices 1. **Regular Analysis** - Run analysis on every commit - Set up automated analysis in CI/CD - Review analysis results in code reviews 2. **Custom Rules** - Create project-specific rules - Maintain a rule catalog - Version control your rules 3. **Performance** - Use selective analysis for large codebases - Enable caching for repeated analysis - Configure appropriate thresholds 4. **Integration** - Integrate with your IDE - Add to your CI/CD pipeline - Connect with code review tools ## Troubleshooting ### Common Issues 1. **Analysis Timeout** ```yaml # Increase timeout in config analysis: timeout: 300 # seconds ``` 2. **High Memory Usage** ```yaml # Adjust batch size analysis: batch_size: 50 ``` 3. **False Positives** ```yaml # Adjust confidence thresholds analysis: patterns: confidence_threshold: 0.9 ``` ## API Reference ### Analysis Endpoints | Endpoint | Description | |----------|-------------| | `/api/analyze` | Basic code analysis | | `/api/analyze/batch` | Batch analysis | | `/api/analyze/ci` | CI/CD integration | | `/api/analyze/dependencies` | Dependency analysis | | `/api/analyze/semantic` | Semantic analysis | ### Response Format ```json { "analysis_id": "uuid", "status": "completed", "results": { "patterns": [...], "quality": {...}, "dependencies": [...], "semantic": {...} }, "metrics": { "time_taken": "2.5s", "files_analyzed": 10 } } ``` ## Next Steps - [Pattern Catalog](patterns/index.md) - [Quality Rules](quality/index.md) - [CI/CD Setup](../integration/ci-cd.md) - [Custom Rules Guide](rules/custom.md)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-codebase-insight'

If you have feedback or need assistance with the MCP directory API, please join our Discord server