Skip to main content
Glama
PLAN.md9.35 kB
# Universal Codebase Analysis System Implementation Plan ## System Overview ```mermaid graph TD subgraph Core Infrastructure A[MCP Server] --> B[Vector Store] A --> C[Cache System] A --> D[Metrics Collector] A --> E[Health Monitor] end subgraph LLM Integration F[Meta Prompt System] --> G[Context Builder] G --> H[Prompt Generator] H --> I[Result Processor] I --> J[Knowledge Updater] end subgraph Analysis Engine K[Code Analyzer] --> L[Pattern Detector] K --> M[Architecture Analyzer] K --> N[Security Analyzer] K --> O[Performance Analyzer] end subgraph Documentation System U[FireCrawl Integration] --> V[Doc Manager] V --> W[Reference Cache] V --> X[Git Integration] end subgraph Task Management P[Task Tracker] --> Q[Debug System] P --> R[Test Manager] P --> S[Doc Generator] P --> T[ADR Creator] end subgraph ADR System AA[Impact Analysis] --> AB[Context Gathering] AB --> AC[Decision Analysis] AC --> AD[ADR Generation] AD --> AE[Implementation Tracking] AE --> AF[Evolution Management] end ``` ## Implementation Phases ### Phase 1: Core Infrastructure (Week 1-2) ```mermaid graph LR A[Setup Project] --> B[Vector Store] B --> C[Cache Layer] C --> D[Health Monitoring] D --> E[Metrics System] ``` #### Components: 1. **Vector Store** - Qdrant integration - Embedding system - Pattern storage - Search functionality 2. **Cache System** - LRU implementation - Result caching - Embedding cache - Performance optimization 3. **Health Monitor** - Component status - Performance metrics - Error tracking - System diagnostics 4. **Metrics Collector** - Usage statistics - Performance data - Error rates - Cache effectiveness ### Phase 2: Documentation & Knowledge Management (Week 3-4) ```mermaid graph TD A[FireCrawl Integration] --> B[Doc Crawler] B --> C[Reference Manager] C --> D[Local Cache] D --> E[Git Management] F[External Sources] --> B F --> G[API Docs] F --> H[Framework Docs] F --> I[Best Practices] ``` #### Components: 1. **Documentation Manager** ```python class DocumentationManager: async def crawl_docs(self, sources: List[str]) -> None: """Crawl and store documentation.""" async def update_references(self) -> None: """Update local documentation cache.""" async def manage_gitignore(self) -> None: """Handle version control for docs.""" ``` 2. **Reference System** ```python class ReferenceSystem: async def index_docs(self) -> None: """Index documentation for search.""" async def find_relevant_docs(self, context: str) -> List[Doc]: """Find relevant documentation.""" ``` ### Phase 3: LLM Integration & ADR System (Week 5-6) ```mermaid graph TD A[Meta Prompt System] --> B[Context Builder] B --> C[Prompt Generator] C --> D[Result Processor] D --> E[Knowledge Base] E --> A F[ADR System] --> G[Impact Analysis] G --> H[Context Gathering] H --> I[Decision Analysis] I --> J[Pattern Learning] ``` #### Components: 1. **Meta Prompt System** ```python class MetaPromptSystem: async def generate_prompt(self, task_type: str) -> str: """Generate task-specific prompts.""" async def evolve_prompts(self, feedback: Dict[str, Any]) -> None: """Evolve prompts based on effectiveness.""" ``` 2. **ADR System** ```python class ADRSystem: async def analyze_impact(self, changes: CodeChanges) -> ImpactAnalysis: """Analyze architectural impact of changes.""" async def gather_context(self) -> DecisionContext: """Gather relevant context for decision.""" async def analyze_options(self, options: List[Option]) -> OptionsAnalysis: """Analyze and compare options.""" async def generate_adr(self, context: DecisionContext) -> ADR: """Generate ADR document.""" async def track_implementation(self, adr: ADR) -> Implementation: """Track ADR implementation.""" async def evolve_adr(self, adr: ADR, feedback: Feedback) -> ADR: """Evolve ADR based on implementation feedback.""" async def learn_patterns(self, adr: ADR) -> List[Pattern]: """Extract reusable patterns from ADR.""" ``` ### Phase 4: Debug & Analysis System (Week 7-8) ```mermaid graph TD A[Debug System] --> B[Issue Analysis] B --> C[Pattern Matching] C --> D[Solution Generation] E[Agans Rules] --> F[System Understanding] F --> G[Failure Analysis] G --> H[Solution Verification] ``` #### Components: 1. **Debug System** ```python class DebugSystem: async def analyze_issue(self, issue: Issue) -> Analysis: """Analyze using Agans' 9 Rules.""" async def suggest_solution(self, analysis: Analysis) -> Solution: """Suggest solution approach.""" ``` ## Prompt Templates ### 1. Meta Prompts ```python META_PROMPTS = { "task_analysis": """ Given task: {task_description} Generate optimal analysis prompt considering: 1. Required context 2. Analysis steps 3. Validation criteria 4. Expected outcomes """, "prompt_evolution": """ Original prompt: {original_prompt} Results: {results} Effectiveness: {metrics} Suggest improvements for: 1. Context gathering 2. Analysis depth 3. Result quality 4. Validation accuracy """ } ``` ### 2. ADR Analysis Prompts ```python ADR_PROMPTS = { "impact_analysis": """ Code Changes: {code_changes} Current Architecture: {architecture_context} Historical Decisions: {related_adrs} Analyze: 1. Architectural Impact - Component changes - Interface modifications - Dependency updates 2. Technical Debt Impact - Existing debt affected - Potential new debt - Mitigation strategies 3. Cross-cutting Concerns - Security implications - Performance impact - Scalability considerations """, "decision_analysis": """ Decision Context: {decision_context} Options Considered: {options_analysis} Similar Decisions: {historical_decisions} Analyze each option for: 1. Technical Alignment - Architecture fit - Technology stack - Development practices 2. Business Impact - Development effort - Maintenance cost - Time to market 3. Risk Assessment - Technical risks - Implementation risks - Operational risks """ } ``` ### 3. Debug Analysis Prompts ```python DEBUG_PROMPTS = { "debug_analysis": """ Issue context: {issue_details} System state: {system_state} Following Agans' 9 Rules: 1. System Understanding: - Current architecture - Component relationships - Expected behavior 2. Failure Analysis: - Reproduction steps - Failure conditions - Pattern matching 3. Observable Data: - Error logs - Stack traces - System metrics 4. Component Isolation: - Affected components - Working components - Interface boundaries """ } ``` ## Implementation Strategy 1. **Infrastructure First** - Set up core components - Establish monitoring - Implement caching - Configure vector store 2. **Documentation System** - Integrate FireCrawl - Set up reference management - Configure Git integration - Implement caching 3. **LLM & ADR Integration** - Implement meta prompt system - Build ADR analysis system - Create knowledge management - Set up learning loop 4. **Debug & Analysis** - Implement Agans' rules system - Add pattern detection - Create solution generation - Set up verification system ## Success Criteria 1. **System Performance** - Response time < 2s - Cache hit rate > 80% - Pattern match accuracy > 90% - System uptime > 99.9% 2. **Documentation Quality** - Reference freshness < 24h - Documentation coverage > 95% - ADR completeness > 90% - Test coverage > 85% 3. **Analysis Quality** - Pattern detection accuracy > 90% - Architecture analysis precision > 85% - Security issue detection > 95% - Performance insight accuracy > 85% 4. **ADR Quality** - Context completeness > 95% - Decision clarity > 90% - Implementation tracking > 85% - Evolution management > 90% 5. **Debug Effectiveness** - Issue resolution time < 24h - Solution accuracy > 90% - Pattern learning rate > 85% - Knowledge reuse > 80% ## Next Steps 1. Toggle to Act mode to begin implementation 2. Start with core infrastructure 3. Implement documentation system 4. Add LLM & ADR integration 5. Build debug & analysis components 6. Test and refine each component 7. Gather feedback and improve

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-codebase-insight'

If you have feedback or need assistance with the MCP directory API, please join our Discord server