Skip to main content
Glama

memory_recall

Retrieve stored project information and insights by searching with queries or project IDs to access previous analyses, recommendations, configurations, and interactions.

Instructions

Recall memories about a project or topic

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
queryYesSearch query or project ID
typeNoType of memory to recall
limitNoMaximum number of memories to return

Implementation Reference

  • The core handler function that implements the memory_recall tool. It initializes the memory manager, performs a search based on the query, optional type filter, and limit, then returns the matching memories with metadata.
    export async function handleMemoryRecall(args: { query: string; type?: string; limit?: number; }): Promise<any> { const manager = await initializeMemory(); const searchOptions: any = { sortBy: "timestamp", limit: args.limit || 10, }; if (args.type && args.type !== "all") { searchOptions.type = args.type; } const memories = await manager.search({}, searchOptions); return { query: args.query, type: args.type || "all", count: memories.length, memories: memories.map((m: any) => ({ id: m.id, type: m.type, timestamp: m.timestamp, data: m.data, metadata: m.metadata, })), }; }
  • The registration of the memory_recall tool within the exported memoryTools array, including name, description, and input schema.
    { name: "memory_recall", description: "Recall memories about a project or topic", inputSchema: { type: "object", properties: { query: { type: "string", description: "Search query or project ID", }, type: { type: "string", enum: [ "analysis", "recommendation", "deployment", "configuration", "interaction", "all", ], description: "Type of memory to recall", }, limit: { type: "number", description: "Maximum number of memories to return", default: 10, }, }, required: ["query"], }, },
  • The input schema definition for the memory_recall tool, specifying the expected parameters: query (required), type (enum), and limit.
    inputSchema: { type: "object", properties: { query: { type: "string", description: "Search query or project ID", }, type: { type: "string", enum: [ "analysis", "recommendation", "deployment", "configuration", "interaction", "all", ], description: "Type of memory to recall", }, limit: { type: "number", description: "Maximum number of memories to return", default: 10, }, }, required: ["query"], },

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/documcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server