research-questions-2025-01-14.md•23.6 kB
# DocuMCP Implementation Research Questions
**Generated**: January 14, 2025
**Project**: DocuMCP - Intelligent MCP Server for GitHub Pages Documentation Deployment
**Phase**: Pre-Implementation Research
**Context**: Comprehensive validation of ADR decisions and implementation planning
---
## Research Overview
This document contains systematic research questions organized by architectural domain, based on the 6 ADRs established for DocuMCP. Each section includes priority ratings, validation criteria, and expected outcomes to guide effective pre-implementation research.
### Research Objectives
1. **Validate technical feasibility** of ADR decisions
2. **Identify implementation risks** and mitigation strategies
3. **Research best practices** for MCP server development
4. **Investigate SSG ecosystem** integration patterns
5. **Explore Diataxis framework** implementation approaches
### Research Constraints
- TypeScript/Node.js ecosystem limitations
- MCP specification compliance requirements
- GitHub Pages deployment constraints
- Performance and scalability requirements
---
## Domain 1: MCP Server Architecture Research (ADR-001)
### Priority: HIGH - Foundation Critical
#### Core Architecture Questions
**Q1.1: TypeScript MCP SDK Performance Characteristics**
- **Question**: What are the performance benchmarks and limitations of the TypeScript MCP SDK under heavy concurrent usage?
- **Priority**: CRITICAL
- **Research Method**: Performance testing, benchmark analysis
- **Success Criteria**: Documented performance profiles for different load scenarios
- **Timeline**: Week 1
- **Dependencies**: None
**Q1.2: Node.js Memory Management for Repository Analysis**
- **Question**: How can we optimize Node.js memory usage when analyzing large repositories (>10GB)?
- **Priority**: HIGH
- **Research Method**: Memory profiling, stress testing
- **Success Criteria**: Memory optimization strategies with <2GB footprint for 10GB repos
- **Timeline**: Week 1-2
- **Dependencies**: Q1.1
**Q1.3: MCP Tool Orchestration Patterns**
- **Question**: What are the most effective patterns for orchestrating complex multi-tool workflows in MCP?
- **Priority**: HIGH
- **Research Method**: Pattern analysis, prototype development
- **Success Criteria**: Documented orchestration patterns with examples
- **Timeline**: Week 2
- **Dependencies**: Q1.1
**Q1.4: Stateless Session Context Management**
- **Question**: How can we efficiently maintain temporary context across tool calls while preserving stateless architecture?
- **Priority**: MEDIUM
- **Research Method**: Architecture research, implementation prototyping
- **Success Criteria**: Context management strategy that doesn't violate MCP principles
- **Timeline**: Week 2-3
- **Dependencies**: Q1.3
**Q1.5: Error Recovery and Fault Tolerance**
- **Question**: What are the best practices for implementing robust error recovery in MCP servers?
- **Priority**: HIGH
- **Research Method**: Error pattern analysis, resilience testing
- **Success Criteria**: Comprehensive error handling framework
- **Timeline**: Week 3
- **Dependencies**: Q1.1, Q1.3
#### Integration and Deployment Questions
**Q1.6: GitHub Copilot Integration Patterns**
- **Question**: What are the optimal integration patterns for MCP servers with GitHub Copilot?
- **Priority**: MEDIUM
- **Research Method**: Integration testing, user experience research
- **Success Criteria**: Documented integration best practices
- **Timeline**: Week 3-4
- **Dependencies**: Q1.3
**Q1.7: Development Environment Setup**
- **Question**: What tooling and development practices optimize TypeScript MCP server development?
- **Priority**: LOW
- **Research Method**: Tool evaluation, workflow analysis
- **Success Criteria**: Development environment recommendations
- **Timeline**: Week 4
- **Dependencies**: None
---
## Domain 2: Repository Analysis Engine Research (ADR-002)
### Priority: HIGH - Intelligence Foundation
#### Analysis Algorithm Questions
**Q2.1: Multi-layered Analysis Performance**
- **Question**: How can we optimize the performance of parallel multi-layered repository analysis?
- **Priority**: CRITICAL
- **Research Method**: Algorithm optimization, parallel processing research
- **Success Criteria**: Analysis completion <30 seconds for typical repositories
- **Timeline**: Week 1-2
- **Dependencies**: Q1.2
**Q2.2: Language Ecosystem Detection Accuracy**
- **Question**: What are the most reliable methods for detecting and analyzing language ecosystems in repositories?
- **Priority**: HIGH
- **Research Method**: Accuracy testing across diverse repositories
- **Success Criteria**: >95% accuracy for major language ecosystems
- **Timeline**: Week 2
- **Dependencies**: None
**Q2.3: Content Analysis Natural Language Processing**
- **Question**: What NLP techniques are most effective for analyzing documentation quality and gaps?
- **Priority**: MEDIUM
- **Research Method**: NLP library evaluation, accuracy testing
- **Success Criteria**: Reliable content quality assessment methodology
- **Timeline**: Week 3
- **Dependencies**: Q2.1
**Q2.4: Complexity Scoring Algorithm Validation**
- **Question**: How can we validate and calibrate the project complexity scoring algorithm?
- **Priority**: MEDIUM
- **Research Method**: Validation against known project types, expert review
- **Success Criteria**: Complexity scores correlate with manual expert assessment
- **Timeline**: Week 3-4
- **Dependencies**: Q2.1, Q2.2
**Q2.5: Incremental Analysis Capabilities**
- **Question**: How can we implement incremental analysis for repositories that change over time?
- **Priority**: LOW
- **Research Method**: Differential analysis research, caching strategies
- **Success Criteria**: Incremental analysis reduces re-analysis time by >80%
- **Timeline**: Week 4+
- **Dependencies**: Q2.1
#### Scalability and Performance Questions
**Q2.6: Large Repository Handling**
- **Question**: What strategies ensure reliable analysis of enterprise-scale repositories (>100GB)?
- **Priority**: MEDIUM
- **Research Method**: Scalability testing, streaming analysis research
- **Success Criteria**: Successful analysis of repositories up to 100GB
- **Timeline**: Week 2-3
- **Dependencies**: Q1.2, Q2.1
**Q2.7: Analysis Caching Strategies**
- **Question**: What caching strategies provide optimal performance for repository analysis?
- **Priority**: MEDIUM
- **Research Method**: Caching pattern research, performance testing
- **Success Criteria**: Cache hit rates >70% for repeated analysis
- **Timeline**: Week 3
- **Dependencies**: Q2.1
---
## Domain 3: SSG Recommendation Engine Research (ADR-003)
### Priority: HIGH - Core Intelligence
#### Decision Analysis Questions
**Q3.1: Multi-Criteria Decision Algorithm Validation**
- **Question**: How can we validate the accuracy of the MCDA framework for SSG recommendations?
- **Priority**: CRITICAL
- **Research Method**: Validation against expert recommendations, A/B testing
- **Success Criteria**: Algorithm recommendations match expert choices >85% of the time
- **Timeline**: Week 1-2
- **Dependencies**: Q2.4
**Q3.2: SSG Capability Profiling Methodology**
- **Question**: What methodology ensures accurate and up-to-date SSG capability profiles?
- **Priority**: HIGH
- **Research Method**: SSG feature analysis, performance benchmarking
- **Success Criteria**: Comprehensive profiles for 5 major SSGs
- **Timeline**: Week 2-3
- **Dependencies**: None
**Q3.3: Confidence Score Calibration**
- **Question**: How can we calibrate confidence scores to accurately reflect recommendation reliability?
- **Priority**: HIGH
- **Research Method**: Statistical analysis, outcome tracking
- **Success Criteria**: Confidence scores correlate with actual recommendation success
- **Timeline**: Week 3
- **Dependencies**: Q3.1
**Q3.4: Performance Modeling Accuracy**
- **Question**: How accurate are our build time and performance predictions for different SSGs?
- **Priority**: MEDIUM
- **Research Method**: Prediction validation, real-world testing
- **Success Criteria**: Performance predictions within 20% of actual results
- **Timeline**: Week 3-4
- **Dependencies**: Q3.2
**Q3.5: Dynamic Weight Adjustment**
- **Question**: Should recommendation weights be dynamically adjusted based on project characteristics?
- **Priority**: LOW
- **Research Method**: Machine learning research, adaptive algorithm development
- **Success Criteria**: Dynamic weighting improves recommendation accuracy by >10%
- **Timeline**: Week 4+
- **Dependencies**: Q3.1, Q3.3
#### Knowledge Base Maintenance Questions
**Q3.6: Automated SSG Capability Monitoring**
- **Question**: How can we automate the monitoring and updating of SSG capabilities?
- **Priority**: MEDIUM
- **Research Method**: API research, automation tool development
- **Success Criteria**: Automated detection of SSG capability changes
- **Timeline**: Week 4
- **Dependencies**: Q3.2
**Q3.7: Community Feedback Integration**
- **Question**: How can we integrate community feedback to improve recommendation accuracy?
- **Priority**: LOW
- **Research Method**: Feedback system design, data analysis methods
- **Success Criteria**: Community feedback improves recommendations measurably
- **Timeline**: Week 4+
- **Dependencies**: Q3.1
---
## Domain 4: Diataxis Framework Integration Research (ADR-004)
### Priority: MEDIUM - Quality Enhancement
#### Implementation Strategy Questions
**Q4.1: Automated Content Structure Generation**
- **Question**: What are the most effective approaches for automating Diataxis-compliant structure generation?
- **Priority**: HIGH
- **Research Method**: Template system research, automation testing
- **Success Criteria**: Automated generation of compliant structures for all supported SSGs
- **Timeline**: Week 2
- **Dependencies**: Q3.2
**Q4.2: Content Planning Intelligence**
- **Question**: How can we intelligently suggest content based on project analysis and Diataxis principles?
- **Priority**: MEDIUM
- **Research Method**: Content analysis algorithms, suggestion accuracy testing
- **Success Criteria**: Content suggestions deemed useful by documentation experts >80% of time
- **Timeline**: Week 3
- **Dependencies**: Q2.3, Q4.1
**Q4.3: SSG-Specific Diataxis Adaptations**
- **Question**: How should Diataxis implementation be adapted for each SSG's unique capabilities?
- **Priority**: MEDIUM
- **Research Method**: SSG feature analysis, adaptation strategy development
- **Success Criteria**: Optimal Diataxis implementation for each supported SSG
- **Timeline**: Week 3-4
- **Dependencies**: Q3.2, Q4.1
**Q4.4: Navigation Generation Algorithms**
- **Question**: What algorithms generate the most intuitive navigation for Diataxis-organized content?
- **Priority**: MEDIUM
- **Research Method**: UX research, navigation pattern analysis
- **Success Criteria**: Navigation usability scores >90% in user testing
- **Timeline**: Week 4
- **Dependencies**: Q4.1, Q4.3
#### Quality Assurance Questions
**Q4.5: Diataxis Compliance Validation**
- **Question**: How can we automatically validate Diataxis compliance in generated structures?
- **Priority**: MEDIUM
- **Research Method**: Validation algorithm development, compliance testing
- **Success Criteria**: Automated compliance checking with >95% accuracy
- **Timeline**: Week 3
- **Dependencies**: Q4.1
**Q4.6: Content Quality Metrics**
- **Question**: What metrics best measure the quality of Diataxis-organized documentation?
- **Priority**: LOW
- **Research Method**: Quality metric research, correlation analysis
- **Success Criteria**: Validated quality metrics that predict user satisfaction
- **Timeline**: Week 4+
- **Dependencies**: Q4.2, Q4.5
---
## Domain 5: GitHub Pages Deployment Research (ADR-005)
### Priority: HIGH - Implementation Critical
#### Workflow Optimization Questions
**Q5.1: SSG-Specific Workflow Performance**
- **Question**: What are the optimal GitHub Actions configurations for each supported SSG?
- **Priority**: CRITICAL
- **Research Method**: Workflow benchmarking, optimization testing
- **Success Criteria**: Optimized workflows reduce build times by >30%
- **Timeline**: Week 1-2
- **Dependencies**: Q3.2
**Q5.2: Advanced Caching Strategies**
- **Question**: What caching strategies provide maximum build performance in GitHub Actions?
- **Priority**: HIGH
- **Research Method**: Caching pattern research, performance testing
- **Success Criteria**: Cache strategies reduce build times by >50% for incremental changes
- **Timeline**: Week 2
- **Dependencies**: Q5.1
**Q5.3: Build Failure Diagnosis and Recovery**
- **Question**: How can we implement intelligent build failure diagnosis and automatic recovery?
- **Priority**: HIGH
- **Research Method**: Error pattern analysis, recovery strategy development
- **Success Criteria**: Automatic recovery for >70% of common build failures
- **Timeline**: Week 3
- **Dependencies**: Q5.1
**Q5.4: Multi-Environment Deployment Strategies**
- **Question**: What strategies support deployment to multiple environments (staging, production)?
- **Priority**: MEDIUM
- **Research Method**: Deployment pattern research, environment management
- **Success Criteria**: Seamless multi-environment deployment capabilities
- **Timeline**: Week 4
- **Dependencies**: Q5.1, Q5.2
#### Security and Compliance Questions
**Q5.5: Workflow Security Best Practices**
- **Question**: What security best practices should be enforced in generated GitHub Actions workflows?
- **Priority**: HIGH
- **Research Method**: Security research, vulnerability analysis
- **Success Criteria**: Security-hardened workflows with minimal attack surface
- **Timeline**: Week 2-3
- **Dependencies**: Q5.1
**Q5.6: Dependency Vulnerability Management**
- **Question**: How can we automatically manage and update vulnerable dependencies in workflows?
- **Priority**: MEDIUM
- **Research Method**: Dependency scanning research, automation development
- **Success Criteria**: Automated vulnerability detection and resolution
- **Timeline**: Week 3
- **Dependencies**: Q5.5
**Q5.7: Secrets and Environment Management**
- **Question**: What are the best practices for managing secrets and environment variables in automated deployments?
- **Priority**: MEDIUM
- **Research Method**: Security pattern research, credential management
- **Success Criteria**: Secure secrets management without user complexity
- **Timeline**: Week 3
- **Dependencies**: Q5.5
#### Monitoring and Troubleshooting Questions
**Q5.8: Deployment Health Monitoring**
- **Question**: How can we implement comprehensive health monitoring for deployed documentation sites?
- **Priority**: MEDIUM
- **Research Method**: Monitoring tool research, health check development
- **Success Criteria**: Comprehensive health monitoring with actionable alerts
- **Timeline**: Week 4
- **Dependencies**: Q5.1
**Q5.9: Performance Optimization Recommendations**
- **Question**: How can we provide automated performance optimization recommendations for deployed sites?
- **Priority**: LOW
- **Research Method**: Performance analysis research, optimization pattern development
- **Success Criteria**: Automated performance recommendations that improve site speed
- **Timeline**: Week 4+
- **Dependencies**: Q5.8
---
## Domain 6: MCP Tools API Research (ADR-006)
### Priority: HIGH - User Interface Critical
#### API Design and Usability Questions
**Q6.1: Tool Parameter Schema Optimization**
- **Question**: What parameter schema designs provide the best balance of flexibility and usability?
- **Priority**: HIGH
- **Research Method**: API design research, usability testing
- **Success Criteria**: Parameter schemas that are intuitive and comprehensive
- **Timeline**: Week 1-2
- **Dependencies**: None
**Q6.2: Response Format Standardization**
- **Question**: What response formats provide optimal client integration and user experience?
- **Priority**: HIGH
- **Research Method**: Format analysis, client integration testing
- **Success Criteria**: Standardized formats that simplify client development
- **Timeline**: Week 2
- **Dependencies**: Q6.1
**Q6.3: Error Handling and User Guidance**
- **Question**: How can we provide the most helpful error messages and recovery guidance?
- **Priority**: HIGH
- **Research Method**: Error analysis, user experience research
- **Success Criteria**: Error messages that enable users to resolve issues >90% of the time
- **Timeline**: Week 2-3
- **Dependencies**: Q6.1
**Q6.4: Progressive Complexity Disclosure**
- **Question**: How can we design APIs that are simple for beginners but powerful for experts?
- **Priority**: MEDIUM
- **Research Method**: API design pattern research, user journey analysis
- **Success Criteria**: APIs that scale from simple to complex use cases seamlessly
- **Timeline**: Week 3
- **Dependencies**: Q6.1, Q6.2
#### Validation and Security Questions
**Q6.5: Comprehensive Input Validation**
- **Question**: What validation strategies ensure robust security and user-friendly error reporting?
- **Priority**: HIGH
- **Research Method**: Validation framework research, security testing
- **Success Criteria**: Validation that prevents all security issues while providing clear feedback
- **Timeline**: Week 2
- **Dependencies**: Q6.1
**Q6.6: Performance and Caching Optimization**
- **Question**: How can we optimize API performance through intelligent caching and response optimization?
- **Priority**: MEDIUM
- **Research Method**: Performance testing, caching strategy research
- **Success Criteria**: API response times <1 second for all operations
- **Timeline**: Week 3
- **Dependencies**: Q6.2
#### Integration and Extension Questions
**Q6.7: Client Integration Patterns**
- **Question**: What integration patterns work best for different types of MCP clients?
- **Priority**: MEDIUM
- **Research Method**: Integration testing, client developer feedback
- **Success Criteria**: Integration patterns that simplify client development
- **Timeline**: Week 3-4
- **Dependencies**: Q6.2, Q6.4
**Q6.8: API Extension and Versioning**
- **Question**: How can we design APIs that support future extensions without breaking existing clients?
- **Priority**: LOW
- **Research Method**: Versioning strategy research, extension pattern analysis
- **Success Criteria**: Extension mechanisms that maintain backward compatibility
- **Timeline**: Week 4
- **Dependencies**: Q6.1, Q6.2
---
## Cross-Domain Integration Research
### Priority: MEDIUM - System Integration
#### End-to-End Workflow Questions
**Q7.1: Complete Workflow Orchestration**
- **Question**: How can we optimize the complete workflow from repository analysis to deployed documentation?
- **Priority**: HIGH
- **Research Method**: Workflow analysis, performance optimization
- **Success Criteria**: End-to-end workflow completion in <10 minutes for typical projects
- **Timeline**: Week 3-4
- **Dependencies**: All previous domains
**Q7.2: Error Recovery Across Tools**
- **Question**: How can we implement robust error recovery that spans multiple tool invocations?
- **Priority**: MEDIUM
- **Research Method**: Error pattern analysis, recovery strategy development
- **Success Criteria**: Graceful recovery from failures at any workflow stage
- **Timeline**: Week 4
- **Dependencies**: Q7.1
**Q7.3: Performance Monitoring and Optimization**
- **Question**: How can we monitor and optimize performance across the entire system?
- **Priority**: MEDIUM
- **Research Method**: Performance monitoring research, optimization strategies
- **Success Criteria**: System-wide performance monitoring and optimization recommendations
- **Timeline**: Week 4
- **Dependencies**: Q7.1
#### Quality Assurance and Validation
**Q7.4: Integration Testing Strategies**
- **Question**: What testing strategies ensure reliable operation across all components?
- **Priority**: MEDIUM
- **Research Method**: Testing framework research, integration test development
- **Success Criteria**: Comprehensive integration tests with >95% coverage
- **Timeline**: Week 4
- **Dependencies**: All previous domains
**Q7.5: User Acceptance Validation**
- **Question**: How can we validate that the complete system meets user needs and expectations?
- **Priority**: LOW
- **Research Method**: User research, acceptance testing
- **Success Criteria**: User satisfaction scores >85% in testing
- **Timeline**: Week 4+
- **Dependencies**: Q7.1, Q7.4
---
## Research Execution Framework
### Research Methodology
1. **Literature Review**: Systematic review of existing solutions and best practices
2. **Prototype Development**: Small-scale implementations to validate approaches
3. **Performance Testing**: Quantitative analysis of performance characteristics
4. **Expert Consultation**: Validation with domain experts and practitioners
5. **Community Research**: Analysis of community practices and feedback
### Success Criteria Framework
Each research question includes:
- **Quantitative Metrics**: Measurable success criteria
- **Qualitative Assessments**: Expert validation and user feedback
- **Risk Mitigation**: Identification of potential issues and solutions
- **Implementation Guidance**: Actionable recommendations for development
### Documentation Requirements
All research outcomes must be documented with:
- **Executive Summary**: Key findings and recommendations
- **Detailed Analysis**: Comprehensive research methodology and results
- **Implementation Recommendations**: Specific guidance for development
- **Risk Assessment**: Identified risks and mitigation strategies
- **Follow-up Actions**: Additional research or validation needed
### Timeline and Prioritization
**Week 1 Focus**: Critical path items (Q1.1, Q2.1, Q3.1, Q5.1)
**Week 2 Focus**: High priority foundational research
**Week 3 Focus**: Integration and optimization research
**Week 4 Focus**: Advanced features and system integration
### Quality Assurance
- **Peer Review**: All research findings reviewed by team members
- **Expert Validation**: Critical decisions validated by external experts
- **Prototype Validation**: Key approaches validated through working prototypes
- **Documentation Standards**: All research properly documented and archived
---
## Research Output Organization
### File Structure
```
docs/research/
├── research-questions-2025-01-14.md (this file)
├── domain-1-mcp-architecture/
├── domain-2-repository-analysis/
├── domain-3-ssg-recommendation/
├── domain-4-diataxis-integration/
├── domain-5-github-deployment/
├── domain-6-api-design/
├── cross-domain-integration/
└── research-findings-summary.md
```
### Progress Tracking
Research progress will be tracked using:
- **Weekly Status Reports**: Progress on each research domain
- **Risk Register**: Ongoing tracking of identified risks and mitigations
- **Decision Log**: Record of key decisions made based on research findings
- **Implementation Readiness Assessment**: Regular evaluation of readiness to begin development
---
**Total Research Questions**: 47 questions across 6 domains
**Critical Path Questions**: 6 questions requiring immediate attention
**High Priority Questions**: 19 questions for weeks 1-2
**Estimated Research Duration**: 4 weeks
**Success Metrics**: Quantitative criteria for each research area
This comprehensive research framework ensures systematic validation of all ADR decisions and provides the foundation for confident implementation of the DocuMCP project.