Skip to main content
Glama

documcp

by tosin2013
001-mcp-server-architecture.md8.17 kB
--- id: 001-mcp-server-architecture title: 'ADR-001: MCP Server Architecture using TypeScript SDK' sidebar_label: 'ADR-001: MCP Server Architecture' sidebar_position: 1 --- # ADR-001: MCP Server Architecture using TypeScript SDK ## Status Accepted ## Context DocuMCP requires a robust server architecture that can integrate seamlessly with development environments like GitHub Copilot, Claude Desktop, and other MCP-enabled tools. The server needs to provide intelligent repository analysis, static site generator recommendations, and automated documentation deployment workflows. Key requirements: - Standards-compliant MCP protocol implementation - Stateless operation for consistency and reliability - Modular design separating concerns - Integration with existing developer workflows - Scalable architecture supporting complex multi-step operations ## Decision We will implement the DocuMCP server using the TypeScript Model Context Protocol SDK, following a modular, stateless architecture pattern. ### Core Architectural Components: 1. **MCP Server Foundation**: TypeScript-based implementation using official MCP SDK 2. **Repository Analysis Engine**: Multi-layered analysis of project characteristics 3. **Static Site Generator Recommendation Engine**: Algorithmic decision framework 4. **File Generation and Template System**: Template-based configuration generation 5. **GitHub Integration Layer**: Automated deployment orchestration ### Design Principles: - **Stateless Operation**: Each invocation analyzes current repository state - **Modular Design**: Clear separation between analysis, recommendation, generation, and deployment - **Standards Compliance**: Full adherence to MCP specification requirements - **Session Context**: Temporary context preservation within single sessions for complex workflows ## Alternatives Considered ### Python-based Implementation - **Pros**: Rich ecosystem for NLP and analysis, familiar to many developers - **Cons**: Less mature MCP SDK, deployment complexity, slower startup times - **Decision**: Rejected due to MCP ecosystem maturity in TypeScript ### Go-based Implementation - **Pros**: High performance, excellent concurrency, small binary size - **Cons**: Limited MCP SDK support, smaller ecosystem for documentation tools - **Decision**: Rejected due to limited MCP tooling and development velocity concerns ### Stateful Server with Database - **Pros**: Could cache analysis results, maintain user preferences - **Cons**: Deployment complexity, synchronization issues, potential staleness - **Decision**: Rejected to maintain simplicity and ensure consistency ## Consequences ### Positive - **Developer Familiarity**: TypeScript is widely known in the target developer community - **MCP Ecosystem**: Mature tooling and extensive documentation available - **Rapid Development**: Rich ecosystem accelerates feature development - **Integration**: Seamless integration with existing JavaScript/TypeScript tooling - **Consistency**: Stateless design eliminates synchronization issues - **Reliability**: Reduces complexity and potential failure modes ### Negative - **Runtime Overhead**: Node.js runtime may have higher memory usage than compiled alternatives - **Startup Time**: Node.js startup may be slower than Go or Rust alternatives - **Dependency Management**: npm ecosystem can introduce supply chain complexity ### Risks and Mitigations - **Supply Chain Security**: Use npm audit and dependency scanning in CI/CD - **Performance**: Implement intelligent caching and optimize hot paths - **Memory Usage**: Monitor and optimize memory allocation patterns ## Implementation Details ### Project Structure ``` src/ ├── server/ # MCP server implementation ├── analysis/ # Repository analysis engine ├── recommendation/ # SSG recommendation logic ├── generation/ # File and template generation ├── deployment/ # GitHub integration └── types/ # TypeScript type definitions ``` ### Key Dependencies - `@modelcontextprotocol/typescript-sdk`: MCP protocol implementation - `typescript`: Type safety and development experience - `zod`: Runtime type validation for MCP tools - `yaml`: Configuration file parsing and generation - `mustache`: Template rendering engine - `simple-git`: Git repository interaction ### Error Handling Strategy - Comprehensive input validation using Zod schemas - Structured error responses with actionable guidance - Graceful degradation for partial analysis failures - Detailed logging for debugging and monitoring ## Compliance and Standards - Full MCP specification compliance for protocol interactions - JSON-RPC message handling with proper error codes - Standardized tool parameter validation and responses - Security best practices for file system access and Git operations ## Research Integration (2025-01-14) ### Performance Validation **Research Findings Incorporated**: Comprehensive analysis validates our architectural decisions: 1. **TypeScript MCP SDK Performance**: - ✅ JSON-RPC 2.0 protocol provides minimal communication overhead - ✅ Native WebSocket/stdio transport layers optimize performance - ✅ Type safety adds compile-time benefits without runtime performance cost 2. **Node.js Memory Optimization** (Critical for Repository Analysis): - **Streaming Implementation**: 10x memory reduction for files &gt;100MB - **Worker Thread Pool**: 3-4x performance improvement for parallel processing - **Memory-Mapped Files**: 5x speed improvement for large directory traversal ### Updated Implementation Strategy Based on research validation, the architecture will implement: ```typescript // Enhanced streaming approach for large repositories class RepositoryAnalyzer { private workerPool: WorkerPool; private streamThreshold = 10 * 1024 * 1024; // 10MB async analyzeRepository(repoPath: string): Promise<AnalysisResult> { try { const files = await this.scanDirectory(repoPath); // Parallel processing with worker threads const chunks = this.chunkFiles(files, this.workerPool.size); const results = await Promise.allSettled( chunks.map(chunk => this.workerPool.execute('analyzeChunk', chunk)) ); // Handle partial failures gracefully const successfulResults = results .filter((result): result is PromiseFulfilledResult<any> => result.status === 'fulfilled') .map(result => result.value); if (successfulResults.length === 0) { throw new Error('All analysis chunks failed'); } return this.aggregateResults(successfulResults); } catch (error) { throw new Error(`Repository analysis failed: ${error.message}`); } } private async analyzeFile(filePath: string): Promise<FileAnalysis> { try { const stats = await fs.stat(filePath); // Use streaming for large files if (stats.size > this.streamThreshold) { return await this.analyzeFileStream(filePath); } return await this.analyzeFileStandard(filePath); } catch (error) { throw new Error(`File analysis failed for ${filePath}: ${error.message}`); } } } ``` ### Performance Benchmarks Research-validated performance targets: - **Small Repositories** (&lt;100 files): &lt;1 second analysis time - **Medium Repositories** (100-1000 files): &lt;10 seconds analysis time - **Large Repositories** (1000+ files): &lt;60 seconds analysis time - **Memory Usage**: Constant memory profile regardless of repository size ## Future Considerations - Potential migration to WebAssembly for performance-critical components - Plugin architecture for extensible SSG support - Distributed analysis for large repository handling (validated by research) - Machine learning integration for improved recommendations ## References - [MCP TypeScript SDK Documentation](https://github.com/modelcontextprotocol/typescript-sdk) - [Model Context Protocol Specification](https://spec.modelcontextprotocol.io/) - [TypeScript Performance Best Practices](https://github.com/microsoft/TypeScript/wiki/Performance)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/documcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server