Skip to main content
Glama

documcp

by tosin2013
index.md4.07 kB
# Explanation Documentation Conceptual documentation and background information about DocuMCP's architecture and design principles. ## Architecture Overview - [DocuMCP Architecture](architecture.md) - Complete system architecture overview - [Phase 2: Intelligence & Learning System](../phase-2-intelligence.md) - Advanced AI features ## Design Principles ### Methodological Pragmatism DocuMCP is built on methodological pragmatism frameworks, emphasizing: - **Practical Outcomes**: Focus on what works reliably - **Systematic Verification**: Structured processes for validating knowledge - **Explicit Fallibilism**: Acknowledging limitations and uncertainty - **Cognitive Systematization**: Organizing knowledge into coherent systems ### Error Architecture Awareness The system recognizes different types of errors: - **Human-Cognitive Errors**: Knowledge gaps, attention limitations, cognitive biases - **Artificial-Stochastic Errors**: Pattern completion errors, context limitations, training artifacts ### Systematic Verification All recommendations include: - Confidence scores for significant recommendations - Explicit checks for different error types - Verification approaches and validation methods - Consideration of edge cases and limitations ## System Components ### Core Architecture - **MCP Server**: Model Context Protocol implementation - **Repository Analysis Engine**: Multi-layered project analysis - **SSG Recommendation Engine**: Data-driven static site generator selection - **Documentation Generation**: Intelligent content creation - **Deployment Automation**: Automated GitHub Pages deployment ### Intelligence System (Phase 2) - **Memory System**: Historical data and pattern learning - **User Preferences**: Personalized recommendations - **Deployment Analytics**: Success pattern analysis - **Smart Scoring**: Intelligent SSG scoring based on historical data ## Integration Patterns ### MCP Integration DocuMCP integrates seamlessly with: - **Claude Desktop**: AI assistant integration - **GitHub Copilot**: Development environment integration - **Other MCP Clients**: Broad compatibility through protocol compliance ### Development Workflow - **Repository Analysis**: Understand project structure and needs - **SSG Recommendation**: Select optimal static site generator - **Documentation Generation**: Create comprehensive documentation - **Deployment**: Automated deployment to GitHub Pages ## Research Foundation DocuMCP is built on extensive research across multiple domains: - **Repository Analysis**: Multi-layered analysis techniques - **SSG Performance**: Comprehensive static site generator analysis - **Documentation Patterns**: Diataxis framework integration - **Deployment Optimization**: GitHub Pages deployment best practices - **API Design**: Model Context Protocol best practices ## Future Directions ### Planned Enhancements - **Advanced AI Integration**: Enhanced machine learning capabilities - **Real-time Collaboration**: Multi-user documentation workflows - **Extended Platform Support**: Support for additional deployment platforms - **Advanced Analytics**: Comprehensive documentation analytics ### Research Areas - **Cross-Domain Integration**: Seamless workflow integration - **Performance Optimization**: Advanced performance tuning - **User Experience**: Enhanced user interaction patterns - **Scalability**: Large-scale deployment management ## Philosophy DocuMCP embodies the principle that documentation should be: - **Intelligent**: AI-powered analysis and recommendations - **Automated**: Minimal manual intervention required - **Comprehensive**: Complete documentation lifecycle coverage - **Accessible**: Easy to use for developers of all skill levels - **Reliable**: Consistent, high-quality results ## Related Documentation - [Tutorials](../tutorials/) - Step-by-step guides - [How-to Guides](../how-to/) - Task-specific instructions - [Reference](../reference/) - Technical API reference - [Architecture Decision Records](../adrs/) - Design decisions and rationale

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/documcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server