Skip to main content
Glama

documcp

by tosin2013
008-intelligent-content-population-engine.md49.3 kB
--- id: 008-intelligent-content-population-engine title: "ADR-008: Intelligent Content Population Engine" sidebar_label: "ADR-8: Intelligent Content Population Engine" sidebar_position: 8 --- # ADR-008: Intelligent Content Population Engine for Diataxis Documentation ## Status Accepted ## Context DocuMCP currently creates excellent Diataxis-compliant documentation structures through ADR-004 and ADR-006, but produces only skeleton content with placeholder text. This creates a significant gap between the framework's potential and delivered value, requiring users to manually populate all documentation content despite having comprehensive repository analysis data available. The current `setup-structure` tool (from ADR-006) provides: - ✅ Professional Diataxis directory structure - ✅ SSG-specific configuration and frontmatter - ✅ Basic template content explaining Diataxis categories - ❌ **Missing**: Project-specific content analysis and intelligent population - ❌ **Missing**: Repository analysis integration for content suggestions - ❌ **Missing**: Technology-specific documentation generation **Current User Journey:** 1. Repository analysis identifies TypeScript project with Express.js, PostgreSQL, Jest tests 2. Diataxis structure created with generic placeholder content 3. User must manually research and write all tutorials, how-to guides, reference docs, and explanations 4. **Result**: 8-20 hours of manual documentation work despite intelligent analysis **Target User Journey:** 1. Repository analysis identifies project characteristics and technology stack 2. Intelligent content population generates project-specific documentation 3. User reviews and refines 60-80% pre-populated, contextually relevant content 4. **Result**: 1-2 hours of refinement work with professional-quality starting point Key gaps identified: - Repository analysis data (125 files, TypeScript/JavaScript ecosystem, test infrastructure) not leveraged for content generation - Extensive technology detection capabilities underutilized for creating relevant examples - Diataxis framework implementation incomplete without intelligent content planning (ADR-004, lines 153-192) - Competitive disadvantage: users get empty templates instead of intelligent assistance ## Decision We will implement an Intelligent Content Population Engine that bridges repository analysis with Diataxis content generation, creating the missing layer between structural generation and user-ready documentation. ### Architecture Overview: #### 1. Content Intelligence Engine **Purpose**: Transform repository analysis into structured content plans **Core Capabilities**: - Project characteristic analysis (technology stack, architecture patterns, API surfaces) - User journey mapping to appropriate Diataxis categories - Content gap identification and priority assignment - Technology-specific example and code snippet generation #### 2. Project-Aware Content Generators **Purpose**: Create contextually relevant content for each Diataxis category **Scope**: Four specialized generators aligned with Diataxis framework: ##### Tutorial Content Generator - **Getting Started**: Framework-specific installation, setup, and first success - **Feature Tutorials**: Based on detected APIs, key dependencies, and project complexity - **Integration Tutorials**: For detected services, databases, and external dependencies ##### How-To Guide Generator - **Common Tasks**: Derived from project type and technology stack - **Troubleshooting**: Based on detected tools, frameworks, and common pain points - **Deployment Guides**: Technology-specific deployment patterns and best practices ##### Reference Documentation Generator - **API Documentation**: Auto-generate from detected API surfaces and endpoints - **Configuration Reference**: Based on identified config files and environment variables - **CLI Reference**: For detected command-line tools and scripts ##### Explanation Content Generator - **Architecture Overview**: Based on detected patterns, dependencies, and project structure - **Design Decisions**: Technology choices and their implications - **Concept Explanations**: Framework and domain-specific concepts #### 3. Repository Analysis Integration Layer **Purpose**: Bridge analysis data with content generation **Integration Points**: - Language ecosystem analysis → Technology-specific content - Dependency analysis → Framework integration guides - Project structure analysis → Architecture documentation - Complexity assessment → Content depth and sophistication level ### Implementation Architecture: ```typescript interface ContentPopulationEngine { // Core engine interface populateContent( analysisId: string, docsPath: string, options: PopulationOptions, ): Promise<PopulationResult>; // Content planning generateContentPlan(analysis: RepositoryAnalysis): ContentPlan; identifyContentGaps( existing: ExistingContent, plan: ContentPlan, ): ContentGap[]; // Content generation generateTutorialContent( plan: TutorialPlan, context: ProjectContext, ): TutorialContent; generateHowToContent(plan: HowToPlan, context: ProjectContext): HowToContent; generateReferenceContent( plan: ReferencePlan, context: ProjectContext, ): ReferenceContent; generateExplanationContent( plan: ExplanationPlan, context: ProjectContext, ): ExplanationContent; } interface PopulationOptions { level: "basic" | "comprehensive" | "intelligent"; includeCodeExamples: boolean; projectSpecific: boolean; preserveExisting: boolean; customizationProfile?: CustomizationProfile; } interface ContentPlan { tutorials: TutorialSuggestion[]; howToGuides: HowToSuggestion[]; reference: ReferenceSuggestion[]; explanation: ExplanationSuggestion[]; crossReferences: ContentRelationship[]; estimatedEffort: EffortEstimate; } interface ProjectContext { primaryLanguage: string; frameworks: Framework[]; architecture: ArchitecturePattern; apiSurfaces: APIAnalysis[]; deploymentTargets: DeploymentTarget[]; testingFrameworks: TestingFramework[]; dependencies: DependencyAnalysis; } ``` ### Content Generation Algorithms: #### Tutorial Generation Algorithm ```typescript function generateTutorials(analysis: RepositoryAnalysis): TutorialSuggestion[] { const suggestions: TutorialSuggestion[] = []; // Always include getting started suggestions.push({ title: `Getting Started with ${analysis.metadata.projectName}`, description: `Learn ${analysis.recommendations.primaryLanguage} development with ${analysis.metadata.projectName}`, priority: "high", sections: generateGettingStartedSections(analysis), codeExamples: generateTechnologySpecificExamples( analysis.dependencies.ecosystem, ), }); // Framework-specific tutorials if (analysis.dependencies.packages.includes("express")) { suggestions.push({ title: "Building REST APIs with Express.js", description: "Complete guide to creating RESTful services", priority: "high", sections: generateExpressTutorialSections(analysis), }); } // Database integration tutorials const dbDeps = detectDatabaseDependencies(analysis.dependencies.packages); dbDeps.forEach((db) => { suggestions.push({ title: `Database Integration with ${db.name}`, description: `Connect and interact with ${db.name} databases`, priority: "medium", sections: generateDatabaseTutorialSections(db, analysis), }); }); return suggestions; } ``` #### Reference Generation Algorithm ```typescript function generateReference( analysis: RepositoryAnalysis, ): ReferenceSuggestion[] { const suggestions: ReferenceSuggestion[] = []; // API documentation from detected endpoints const apiSurfaces = detectAPIEndpoints(analysis); if (apiSurfaces.length > 0) { suggestions.push({ title: "API Reference", description: "Complete API endpoint documentation", content: generateAPIDocumentation(apiSurfaces), format: "openapi-spec", }); } // Configuration reference from detected config files const configFiles = detectConfigurationFiles(analysis); configFiles.forEach((config) => { suggestions.push({ title: `${config.type} Configuration`, description: `Configuration options for ${config.name}`, content: generateConfigurationReference(config), format: "configuration-table", }); }); // CLI reference from detected scripts const cliCommands = detectCLICommands(analysis); if (cliCommands.length > 0) { suggestions.push({ title: "Command Line Interface", description: "Available commands and options", content: generateCLIReference(cliCommands), format: "cli-documentation", }); } return suggestions; } ``` ### Technology-Specific Content Templates: #### JavaScript/TypeScript Ecosystem ```typescript const JAVASCRIPT_TEMPLATES = { gettingStarted: { prerequisites: ["Node.js 18+", "npm or yarn", "Git"], installationSteps: [ "Clone the repository", "Install dependencies with npm install", "Copy environment variables", "Run development server", ], verificationSteps: [ "Check server starts successfully", "Access application in browser", "Run test suite to verify setup", ], }, expressAPI: { sections: [ "Project Structure Overview", "Creating Your First Route", "Middleware Configuration", "Database Integration", "Error Handling", "Testing Your API", ], codeExamples: generateExpressCodeExamples, }, testingGuides: { jest: generateJestHowToGuides, cypress: generateCypressHowToGuides, playwright: generatePlaywrightHowToGuides, }, }; ``` #### Multi-Language Framework Support ##### JavaScript/TypeScript Ecosystem ```typescript const JAVASCRIPT_TEMPLATES = { gettingStarted: { prerequisites: ["Node.js 18+", "npm or yarn", "Git"], installationSteps: [ "Clone the repository", "Install dependencies with npm install", "Copy environment variables", "Run development server", ], verificationSteps: [ "Check server starts successfully", "Access application in browser", "Run test suite to verify setup", ], }, frameworks: { express: { tutorials: [ "REST API Development", "Middleware Configuration", "Database Integration", ], howToGuides: [ "Performance Optimization", "Error Handling", "Authentication Setup", ], reference: [ "Route Configuration", "Middleware Reference", "Configuration Options", ], explanation: [ "Express Architecture", "Middleware Pattern", "Async Handling", ], }, react: { tutorials: ["Component Development", "State Management", "React Router"], howToGuides: [ "Performance Optimization", "Testing Components", "Deployment", ], reference: ["Component API", "Hooks Reference", "Build Configuration"], explanation: [ "Component Architecture", "State Flow", "Rendering Lifecycle", ], }, nestjs: { tutorials: [ "Dependency Injection", "Controllers and Services", "Database Integration", ], howToGuides: [ "Custom Decorators", "Microservices", "GraphQL Integration", ], reference: ["Decorator Reference", "Module System", "Configuration"], explanation: ["DI Architecture", "Module Design", "Enterprise Patterns"], }, }, }; ``` ##### Python Ecosystem Support ```typescript const PYTHON_TEMPLATES = { gettingStarted: { prerequisites: ["Python 3.8+", "pip or poetry", "Virtual environment"], installationSteps: [ "Create virtual environment", "Activate virtual environment", "Install dependencies from requirements.txt/pyproject.toml", "Set up environment variables", "Run development server", ], verificationSteps: [ "Check application starts successfully", "Run test suite with pytest", "Verify API endpoints respond correctly", ], }, frameworks: { django: { tutorials: [ "Django Project Setup and Configuration", "Models and Database Integration", "Views and URL Routing", "Django REST Framework APIs", "User Authentication and Permissions", ], howToGuides: [ "Deploy Django to Production", "Optimize Database Queries", "Implement Caching Strategies", "Handle File Uploads", "Configure CORS and Security", ], reference: [ "Django Settings Reference", "Model Field Types", "URL Configuration Patterns", "Middleware Reference", "Management Commands", ], explanation: [ "Django MTV Architecture", "ORM Design Decisions", "Security Model", "Scalability Patterns", ], }, fastapi: { tutorials: [ "FastAPI Application Structure", "Pydantic Models and Validation", "Dependency Injection System", "Database Integration with SQLAlchemy", "Authentication and Security", ], howToGuides: [ "Optimize FastAPI Performance", "Implement Background Tasks", "Handle File Processing", "Set up Monitoring and Logging", "Deploy with Docker and Kubernetes", ], reference: [ "FastAPI Decorators Reference", "Pydantic Model Configuration", "Dependency System Reference", "Security Utilities", "Testing Utilities", ], explanation: [ "ASGI vs WSGI Architecture", "Type Hints and Validation", "Dependency Injection Benefits", "Performance Characteristics", ], }, flask: { tutorials: [ "Flask Application Factory Pattern", "Blueprint Organization", "Database Integration with SQLAlchemy", "User Session Management", "RESTful API Development", ], howToGuides: [ "Structure Large Flask Applications", "Implement Rate Limiting", "Handle Background Jobs", "Configure Production Deployment", "Debug Flask Applications", ], reference: [ "Flask Configuration Reference", "Request and Response Objects", "Template Engine Reference", "Extension Integration", "CLI Commands", ], explanation: [ "Flask Philosophy and Design", "WSGI Application Structure", "Extension Ecosystem", "Microframework Benefits", ], }, }, }; class PythonContentGenerator implements FrameworkContentGenerator { detectFramework(analysis: RepositoryAnalysis): Framework[] { const frameworks: Framework[] = []; // Django detection if ( this.hasDependency(analysis, "django") || this.hasFile(analysis, "manage.py") || this.hasFile(analysis, "settings.py") ) { frameworks.push({ name: "django", version: this.extractVersion(analysis, "django"), configFiles: ["settings.py", "urls.py", "wsgi.py"], appStructure: this.analyzeDjangoApps(analysis), }); } // FastAPI detection if ( this.hasDependency(analysis, "fastapi") || this.hasImport(analysis, "from fastapi import") ) { frameworks.push({ name: "fastapi", version: this.extractVersion(analysis, "fastapi"), configFiles: this.getFastAPIConfigFiles(analysis), routerStructure: this.analyzeFastAPIRouters(analysis), }); } // Flask detection if ( this.hasDependency(analysis, "flask") || this.hasImport(analysis, "from flask import") ) { frameworks.push({ name: "flask", version: this.extractVersion(analysis, "flask"), configFiles: this.getFlaskConfigFiles(analysis), blueprintStructure: this.analyzeFlaskBlueprints(analysis), }); } return frameworks; } generateFrameworkContent( framework: Framework, context: ProjectContext, ): FrameworkContent { const templates = PYTHON_TEMPLATES.frameworks[framework.name]; return { tutorials: templates.tutorials.map((title) => ({ title: `${title} for ${context.projectName}`, content: this.generatePythonTutorialContent(framework, title, context), codeExamples: this.generatePythonCodeExamples( framework, title, context, ), })), howToGuides: templates.howToGuides.map((title) => ({ title, content: this.generatePythonHowToContent(framework, title, context), tasks: this.generatePythonTasks(framework, title, context), })), reference: templates.reference.map((title) => ({ title, content: this.generatePythonReferenceContent(framework, title, context), })), explanation: templates.explanation.map((title) => ({ title, content: this.generatePythonExplanationContent( framework, title, context, ), })), }; } } ``` #### Framework-Specific Content Generation ```typescript interface FrameworkContentGenerator { detectFramework(dependencies: string[]): Framework | null; generateFrameworkContent( framework: Framework, context: ProjectContext, ): FrameworkContent; } const FRAMEWORK_GENERATORS: Record<string, FrameworkContentGenerator> = { // JavaScript/TypeScript frameworks express: new ExpressContentGenerator(), react: new ReactContentGenerator(), vue: new VueContentGenerator(), angular: new AngularContentGenerator(), nestjs: new NestJSContentGenerator(), fastify: new FastifyContentGenerator(), // Python frameworks django: new DjangoContentGenerator(), fastapi: new FastAPIContentGenerator(), flask: new FlaskContentGenerator(), pyramid: new PyramidContentGenerator(), // Future language support "spring-boot": new SpringBootContentGenerator(), // Java gin: new GinContentGenerator(), // Go "actix-web": new ActixContentGenerator(), // Rust }; ``` ## Alternatives Considered ### Manual Content Creation Only - **Pros**: Simple implementation, full user control, no AI dependency - **Cons**: Massive user effort, inconsistent quality, underutilizes analysis capabilities - **Decision**: Rejected - provides minimal value over generic templates ### AI-Generated Content via External APIs - **Pros**: Advanced content generation, natural language processing - **Cons**: External dependencies, costs, inconsistent quality, latency issues - **Decision**: Rejected for initial version - adds complexity without guaranteed quality ### Community-Contributed Content Templates - **Pros**: Diverse perspectives, battle-tested content, community engagement - **Cons**: Quality control challenges, maintenance overhead, incomplete coverage - **Decision**: Considered for future enhancement - focus on algorithmic generation first ### Generic Template Expansion - **Pros**: Easier implementation, consistent structure - **Cons**: Still requires significant manual work, doesn't leverage analysis intelligence - **Decision**: Rejected - doesn't address core value proposition gap ## Consequences ### Positive - **Dramatic User Value Increase**: 60-80% content pre-population vs. empty templates - **Competitive Differentiation**: Only documentation tool with intelligent content generation - **Analysis ROI**: Comprehensive repository analysis finally delivers proportional value - **Framework Completion**: Fulfills ADR-004 vision for content planning intelligence - **User Experience**: Transform from "structure generator" to "documentation assistant" ### Negative - **Implementation Complexity**: Significant engineering effort for content generation algorithms - **Content Quality Risk**: Generated content may require refinement for accuracy - **Technology Coverage**: Initial version limited to well-known frameworks and patterns - **Maintenance Overhead**: Content templates require updates as technologies evolve ### Risks and Mitigations - **Quality Control**: Implement content validation and user review workflows - **Technology Coverage**: Start with most common frameworks, expand based on usage - **Algorithm Accuracy**: Validate generated content against project reality - **User Expectations**: Clear communication about generated vs. curated content ## Implementation Details ### MCP Tool Interface ```typescript // New tool: populate_diataxis_content interface PopulateDiataxisContentTool { name: "populate_diataxis_content"; description: "Intelligently populate Diataxis documentation with project-specific content"; inputSchema: { type: "object"; properties: { analysisId: { type: "string"; description: "Repository analysis ID from analyze_repository tool"; }; docsPath: { type: "string"; description: "Path to documentation directory"; }; populationLevel: { type: "string"; enum: ["basic", "comprehensive", "intelligent"]; default: "comprehensive"; description: "Level of content generation detail"; }; includeProjectSpecific: { type: "boolean"; default: true; description: "Generate project-specific examples and code"; }; preserveExisting: { type: "boolean"; default: true; description: "Preserve any existing content"; }; technologyFocus: { type: "array"; items: { type: "string" }; description: "Specific technologies to emphasize in content"; }; }; required: ["analysisId", "docsPath"]; }; } ``` ### Content Generation Pipeline ```typescript class ContentPopulationEngine { async populateContent(args: PopulationArgs): Promise<PopulationResult> { // 1. Retrieve and validate repository analysis const analysis = await this.getRepositoryAnalysis(args.analysisId); this.validateAnalysis(analysis); // 2. Generate content plan based on project characteristics const contentPlan = await this.generateContentPlan( analysis, args.populationLevel, ); // 3. Generate content for each Diataxis category const [tutorials, howTos, reference, explanation] = await Promise.all([ this.generateTutorialContent(contentPlan.tutorials, analysis), this.generateHowToContent(contentPlan.howToGuides, analysis), this.generateReferenceContent(contentPlan.reference, analysis), this.generateExplanationContent(contentPlan.explanation, analysis), ]); // 4. Write content to documentation structure const filesCreated = await this.writeContentToStructure( args.docsPath, { tutorials, howTos, reference, explanation }, args.preserveExisting, ); // 5. Generate cross-references and navigation updates await this.updateNavigationAndCrossReferences(args.docsPath, contentPlan); return { success: true, filesCreated, contentPlan, populationMetrics: this.calculatePopulationMetrics(filesCreated), nextSteps: this.generateNextSteps(analysis, contentPlan), }; } } ``` ### Technology Detection and Content Mapping ```typescript interface TechnologyMapper { detectTechnologies(analysis: RepositoryAnalysis): TechnologyProfile; mapToContentTemplates(technologies: TechnologyProfile): ContentTemplateSet; generateTechnologySpecificExamples( technology: Technology, context: ProjectContext, ): CodeExample[]; } class JavaScriptTechnologyMapper implements TechnologyMapper { detectTechnologies(analysis: RepositoryAnalysis): TechnologyProfile { const profile: TechnologyProfile = { runtime: this.detectRuntime(analysis), // Node.js, Deno, Bun framework: this.detectFramework(analysis), // Express, Fastify, Koa frontend: this.detectFrontend(analysis), // React, Vue, Angular database: this.detectDatabase(analysis), // PostgreSQL, MongoDB, Redis testing: this.detectTesting(analysis), // Jest, Mocha, Playwright deployment: this.detectDeployment(analysis), // Docker, Kubernetes, Vercel devops: this.detectDevOpsTools(analysis), // Ansible, Tekton, OpenShift, Podman }; return profile; } mapToContentTemplates(technologies: TechnologyProfile): ContentTemplateSet { return { tutorials: this.generateTutorialTemplates(technologies), howToGuides: this.generateHowToTemplates(technologies), reference: this.generateReferenceTemplates(technologies), explanation: this.generateExplanationTemplates(technologies), }; } } ``` ### DevOps and Infrastructure Tooling Support #### DevOps Tool Detection and Content Generation ```typescript interface DevOpsToolMapper { detectDevOpsTools(analysis: RepositoryAnalysis): DevOpsToolProfile; generateDevOpsContent( tools: DevOpsToolProfile, context: ProjectContext, ): DevOpsContent; createInfrastructureDocumentation( infrastructure: InfrastructureProfile, deploymentPattern: DeploymentPattern, ): InfrastructureDocumentation; } interface DevOpsToolProfile { containerization: ContainerTechnology[]; // Docker, Podman, Buildah orchestration: OrchestrationTechnology[]; // Kubernetes, OpenShift, Nomad cicd: CICDTechnology[]; // Tekton, GitHub Actions, Jenkins, GitLab CI configuration: ConfigManagementTechnology[]; // Ansible, Terraform, Helm monitoring: MonitoringTechnology[]; // Prometheus, Grafana, Jaeger security: SecurityTechnology[]; // Falco, OPA, Vault } class DevOpsContentGenerator implements DevOpsToolMapper { detectDevOpsTools(analysis: RepositoryAnalysis): DevOpsToolProfile { return { containerization: this.detectContainerization(analysis), orchestration: this.detectOrchestration(analysis), cicd: this.detectCICD(analysis), configuration: this.detectConfigManagement(analysis), monitoring: this.detectMonitoring(analysis), security: this.detectSecurity(analysis), }; } private detectContainerization( analysis: RepositoryAnalysis, ): ContainerTechnology[] { const detected: ContainerTechnology[] = []; // Docker detection if ( this.hasFile(analysis, "Dockerfile") || this.hasFile(analysis, "docker-compose.yml") || this.hasFile(analysis, "docker-compose.yaml") ) { detected.push({ name: "docker", version: this.extractDockerVersion(analysis), configFiles: this.getDockerFiles(analysis), usage: this.analyzeDockerUsage(analysis), }); } // Podman detection if ( this.hasFile(analysis, "Containerfile") || this.hasReference(analysis, "podman") || this.hasFile(analysis, "podman-compose.yml") ) { detected.push({ name: "podman", version: this.extractPodmanVersion(analysis), configFiles: this.getPodmanFiles(analysis), usage: this.analyzePodmanUsage(analysis), }); } return detected; } private detectOrchestration( analysis: RepositoryAnalysis, ): OrchestrationTechnology[] { const detected: OrchestrationTechnology[] = []; // Kubernetes detection if ( this.hasDirectory(analysis, "k8s/") || this.hasDirectory(analysis, "kubernetes/") || this.hasFilePattern(analysis, "*.yaml", "apiVersion: apps/v1") || this.hasFilePattern(analysis, "*.yml", "kind: Deployment") ) { detected.push({ name: "kubernetes", manifests: this.getKubernetesManifests(analysis), resources: this.analyzeKubernetesResources(analysis), namespaces: this.extractNamespaces(analysis), }); } // OpenShift detection if ( this.hasDirectory(analysis, ".s2i/") || this.hasReference(analysis, "openshift") || this.hasFileContent(analysis, "kind: DeploymentConfig") || this.hasFileContent(analysis, "kind: Route") ) { detected.push({ name: "openshift", templates: this.getOpenShiftTemplates(analysis), buildConfigs: this.getBuildConfigs(analysis), routes: this.getRoutes(analysis), }); } return detected; } private detectCICD(analysis: RepositoryAnalysis): CICDTechnology[] { const detected: CICDTechnology[] = []; // Tekton detection if ( this.hasDirectory(analysis, ".tekton/") || this.hasFileContent(analysis, "apiVersion: tekton.dev") || this.hasFilePattern(analysis, "*.yaml", "kind: Pipeline") ) { detected.push({ name: "tekton", pipelines: this.getTektonPipelines(analysis), tasks: this.getTektonTasks(analysis), triggers: this.getTektonTriggers(analysis), }); } return detected; } private detectConfigManagement( analysis: RepositoryAnalysis, ): ConfigManagementTechnology[] { const detected: ConfigManagementTechnology[] = []; // Ansible detection if ( this.hasFile(analysis, "ansible.cfg") || this.hasDirectory(analysis, "playbooks/") || this.hasDirectory(analysis, "roles/") || this.hasFile(analysis, "inventory") || this.hasFilePattern(analysis, "*.yml", "hosts:") || this.hasFilePattern(analysis, "*.yaml", "tasks:") ) { detected.push({ name: "ansible", playbooks: this.getAnsiblePlaybooks(analysis), roles: this.getAnsibleRoles(analysis), inventory: this.getAnsibleInventory(analysis), vaultFiles: this.getAnsibleVault(analysis), }); } return detected; } } ``` #### DevOps-Specific Content Templates and Generation **Key DevOps Documentation Patterns**: - **Container Tutorials**: Project-specific Dockerfile optimization, multi-stage builds - **Orchestration Guides**: Kubernetes/OpenShift deployment strategies - **Infrastructure as Code**: Ansible playbooks for application deployment - **CI/CD Pipelines**: Tekton pipeline configuration and best practices ```typescript const DEVOPS_CONTENT_TEMPLATES = { docker: { tutorial: "Containerizing {projectName} with Docker", howto: ["Optimize Docker Images", "Debug Container Issues"], reference: "Dockerfile Configuration Reference", explanation: "Container Architecture Decisions", }, kubernetes: { tutorial: "Deploying {projectName} to Kubernetes", howto: ["Scale Applications", "Troubleshoot Deployments"], reference: "Kubernetes Manifest Specifications", explanation: "Orchestration Strategy", }, ansible: { tutorial: "Infrastructure as Code with Ansible", howto: ["Automate Deployment", "Manage Multi-Environment"], reference: "Playbook and Role Reference", explanation: "Configuration Management Strategy", }, tekton: { tutorial: "CI/CD Pipeline with Tekton", howto: ["Build and Deploy", "Manage Secrets"], reference: "Pipeline Specifications", explanation: "Cloud Native CI/CD Architecture", }, }; function generateDevOpsContent( devopsProfile: DevOpsToolProfile, projectContext: ProjectContext, ): DevOpsContentPlan { // Generate project-specific DevOps documentation // based on detected tools and project characteristics } ``` ### Community Contribution Framework for Language and Tool Support #### Language Extension Architecture ```typescript interface LanguageExtension { name: string; ecosystem: string; packageManagers: string[]; detectionPatterns: DetectionPattern[]; frameworks: FrameworkDefinition[]; contentTemplates: LanguageContentTemplates; validationRules: ValidationRule[]; } interface DetectionPattern { type: "file" | "dependency" | "import" | "content"; pattern: string | RegExp; weight: number; // 1-10, higher = more confident description: string; } interface FrameworkDefinition { name: string; detectionPatterns: DetectionPattern[]; contentTemplates: FrameworkContentTemplates; codeExamples: CodeExampleGenerator; bestPractices: BestPractice[]; } ``` #### Contribution Guidelines for New Language Support ##### Step 1: Language Detection Implementation ```typescript // Example: Adding Go language support const GO_LANGUAGE_EXTENSION: LanguageExtension = { name: "go", ecosystem: "go", packageManagers: ["go mod", "dep"], detectionPatterns: [ { type: "file", pattern: "go.mod", weight: 10, description: "Go module definition file", }, { type: "file", pattern: "go.sum", weight: 8, description: "Go module checksums", }, { type: "file", pattern: /.*\.go$/, weight: 6, description: "Go source files", }, { type: "content", pattern: /^package main$/m, weight: 7, description: "Go main package declaration", }, ], frameworks: [ // Framework definitions... ], contentTemplates: { // Content templates... }, }; ``` ##### Step 2: Framework-Specific Content Templates ```typescript // Example: Adding Gin framework support for Go const GIN_FRAMEWORK: FrameworkDefinition = { name: "gin", detectionPatterns: [ { type: "dependency", pattern: "github.com/gin-gonic/gin", weight: 10, description: "Gin framework dependency", }, { type: "import", pattern: 'gin "github.com/gin-gonic/gin"', weight: 9, description: "Gin framework import", }, ], contentTemplates: { tutorials: [ { title: "Building REST APIs with Gin", diataxisType: "tutorial", sections: [ "Setting up Gin Application", "Defining Routes and Handlers", "Middleware Configuration", "Database Integration", "Testing Gin Applications", ], prerequisites: [ "Go installed (1.19+)", "Basic Go language knowledge", "Understanding of HTTP concepts", ], estimatedTime: "60 minutes", difficulty: "beginner", }, ], howToGuides: [ { title: "Optimize Gin Performance", diataxisType: "how-to", tasks: [ "Configure connection pooling", "Implement caching strategies", "Set up rate limiting", "Profile and benchmark endpoints", ], }, ], reference: [ { title: "Gin Router Configuration", diataxisType: "reference", sections: [ "Route definition patterns", "Middleware registration", "Context object methods", "Error handling patterns", ], }, ], explanation: [ { title: "Gin Architecture and Design Decisions", diataxisType: "explanation", topics: [ "HTTP router performance characteristics", "Middleware pipeline design", "Context lifecycle management", "Comparison with other Go frameworks", ], }, ], }, codeExamples: { basicServer: `package main import ( "net/http" "github.com/gin-gonic/gin" ) func main() { r := gin.Default() r.GET("/health", func(c *gin.Context) { c.JSON(http.StatusOK, gin.H{ "status": "healthy", }) }) r.Run(":8080") }`, middleware: `func LoggerMiddleware() gin.HandlerFunc { return func(c *gin.Context) { start := time.Now() c.Next() duration := time.Since(start) log.Printf("%s %s %v", c.Request.Method, c.Request.URL.Path, duration) } }`, }, }; ``` ##### Step 3: Content Generation Logic ```typescript class GoContentGenerator implements FrameworkContentGenerator { detectFramework(analysis: RepositoryAnalysis): Framework[] { const frameworks: Framework[] = []; // Check for Gin framework if (this.hasGoModule(analysis, "github.com/gin-gonic/gin")) { frameworks.push({ name: "gin", version: this.extractGoModuleVersion( analysis, "github.com/gin-gonic/gin", ), configFiles: this.getGinConfigFiles(analysis), routeStructure: this.analyzeGinRoutes(analysis), }); } // Check for Echo framework if (this.hasGoModule(analysis, "github.com/labstack/echo")) { frameworks.push({ name: "echo", version: this.extractGoModuleVersion( analysis, "github.com/labstack/echo", ), configFiles: this.getEchoConfigFiles(analysis), routeStructure: this.analyzeEchoRoutes(analysis), }); } return frameworks; } generateFrameworkContent( framework: Framework, context: ProjectContext, ): FrameworkContent { const templates = GO_LANGUAGE_EXTENSION.frameworks.find( (f) => f.name === framework.name, )?.contentTemplates; if (!templates) return this.generateGenericGoContent(framework, context); return this.populateTemplatesWithProjectContext( templates, framework, context, ); } private generateProjectSpecificGoDockerfile(context: ProjectContext): string { return `# Multi-stage build for ${context.projectName} FROM golang:1.21-alpine AS builder WORKDIR /app COPY go.mod go.sum ./ RUN go mod download COPY . . RUN CGO_ENABLED=0 GOOS=linux go build -o main . # Final stage FROM alpine:latest RUN apk --no-cache add ca-certificates WORKDIR /root/ COPY --from=builder /app/main . EXPOSE 8080 CMD ["./main"]`; } } ``` #### Contribution Process and Standards ##### Community Contribution Workflow 1. **Language Proposal**: Submit GitHub issue with language/framework proposal 2. **Detection Patterns**: Define comprehensive detection patterns 3. **Content Templates**: Create Diataxis-compliant content templates 4. **Code Examples**: Provide working, project-specific code examples 5. **Testing**: Include validation tests for detection and generation 6. **Documentation**: Document contribution for future maintainers 7. **Review Process**: Community and maintainer review 8. **Integration**: Merge into main extension registry ##### Quality Standards for Contributions ```typescript interface ContributionStandards { detection: { minimumPatterns: 3; requiredTypes: ["file", "dependency"]; weightDistribution: "balanced"; // No single pattern > 70% weight falsePositiveRate: "&lt;5%"; }; content: { diataxisCompliance: "strict"; tutorialCount: "minimum 2"; howToGuideCount: "minimum 3"; referenceCompleteness: "80%"; explanationDepth: "architectural decisions covered"; }; codeExamples: { compilationSuccess: "100%"; projectSpecific: "true"; bestPractices: "current industry standards"; securityConsiderations: "included"; }; testing: { detectionAccuracy: "&gt;90%"; contentGeneration: "functional tests"; integrationTests: "with existing systems"; performanceImpact: "&lt;10% generation time increase"; }; } ``` ##### Template Contribution Format ```typescript // Required structure for new language contributions interface LanguageContributionTemplate { metadata: { contributorName: string; contributorEmail: string; languageName: string; version: string; lastUpdated: string; maintenanceCommitment: "ongoing" | "initial-only"; }; detection: DetectionPatternSet; frameworks: FrameworkDefinition[]; contentTemplates: ContentTemplateSet; validation: ValidationTestSuite; documentation: ContributionDocumentation; } // Example contribution file structure: // src/languages/ // ├── go/ // │ ├── detection.ts // │ ├── frameworks/ // │ │ ├── gin.ts // │ │ ├── echo.ts // │ │ └── fiber.ts // │ ├── templates/ // │ │ ├── tutorials.ts // │ │ ├── howto.ts // │ │ ├── reference.ts // │ │ └── explanation.ts // │ ├── tests/ // │ │ ├── detection.test.ts // │ │ └── generation.test.ts // │ └── README.md ``` #### Community Validation and Review Process ##### Automated Validation Pipeline ```typescript interface ContributionValidation { // Automated checks syntaxValidation: "TypeScript compilation success"; patternTesting: "Detection accuracy against test repositories"; contentValidation: "Diataxis compliance checking"; performanceImpact: "Generation time benchmarking"; // Community review peerReview: "Two community developer approvals"; maintainerReview: "Core team architectural review"; expertValidation: "Language expert accuracy verification"; // Integration testing endToEndTesting: "Full workflow validation"; regressionTesting: "No impact on existing languages"; documentationReview: "Contribution documentation completeness"; } ``` ##### Long-term Maintenance Framework ```typescript interface MaintenanceFramework { languageUpdates: { frameworkVersions: "automated dependency tracking"; newFrameworks: "community contribution process"; deprecatedPatterns: "automated detection and flagging"; }; communityGovernance: { languageMaintainers: "designated community experts"; updateProcess: "structured enhancement proposals"; qualityAssurance: "continuous validation and testing"; }; toolingSupport: { contributionCLI: "automated scaffolding for new languages"; validationTools: "automated testing and verification"; documentationGeneration: "automated API documentation"; }; } ``` ## Quality Assurance ### Content Validation Framework ```typescript interface ContentValidator { validateAccuracy( content: GeneratedContent, analysis: RepositoryAnalysis, ): ValidationResult; checkDiataxisCompliance(content: GeneratedContent): ComplianceResult; verifyCodeExamples( examples: CodeExample[], projectContext: ProjectContext, ): ValidationResult; assessContentCompleteness( content: GeneratedContent, plan: ContentPlan, ): CompletenessResult; } interface ValidationResult { isValid: boolean; issues: ValidationIssue[]; suggestions: ImprovementSuggestion[]; confidence: number; } ``` ### Testing Strategy ```typescript describe("ContentPopulationEngine", () => { describe("Tutorial Generation", () => { it( "should generate appropriate getting started tutorial for Express.js project", ); it("should include technology-specific setup steps"); it("should provide working code examples"); it("should maintain Diataxis tutorial principles"); }); describe("Technology Detection", () => { it("should correctly identify primary framework from package.json"); it("should detect database dependencies and generate appropriate content"); it("should handle multi-framework projects appropriately"); }); describe("Content Quality", () => { it("should generate accurate code examples that match project structure"); it("should maintain consistent tone and style across content types"); it("should create appropriate cross-references between content sections"); }); }); ``` ### Performance Requirements - **Content Generation Time**: < 30 seconds for comprehensive population - **Memory Usage**: < 500MB for large repository analysis and content generation - **Content Quality**: 80%+ accuracy for generated technical content - **Coverage**: Support for 15+ major JavaScript/TypeScript frameworks initially ## Integration Points ### Repository Analysis Integration (ADR-002) - Leverage multi-layered analysis results for informed content generation - Use complexity assessment to determine content depth and sophistication - Integrate dependency analysis for framework-specific content selection ### Diataxis Framework Integration (ADR-004) - Implement content planning intelligence outlined in ADR-004 lines 153-192 - Generate content that strictly adheres to Diataxis category principles - Create appropriate cross-references and user journey flows ### MCP Tools API Integration (ADR-006) - Add populate_diataxis_content as seventh core MCP tool - Maintain consistent error handling and response format patterns - Integrate with existing setup_structure tool for seamless workflow ### SSG Configuration Integration (ADR-006) - Generate content with appropriate frontmatter for target SSG - Adapt content format and structure to SSG capabilities - Ensure generated content renders correctly across all supported SSGs ## Future Enhancements ### Advanced AI Integration - **Large Language Model Integration**: Use specialized models for content refinement - **Code Analysis AI**: Advanced analysis of project patterns for more accurate content - **Natural Language Generation**: Improve content quality and readability ### Extended Technology Support #### Python Ecosystem (Priority Implementation) - **Web Frameworks**: Django, Flask, FastAPI, Pyramid, Bottle - **Data Science**: Jupyter, Pandas, NumPy, SciPy documentation patterns - **ML/AI**: TensorFlow, PyTorch, Scikit-learn integration guides - **API Development**: Django REST Framework, FastAPI advanced patterns - **Testing**: pytest, unittest, behave testing documentation - **Deployment**: Gunicorn, uWSGI, Celery configuration guides #### Additional Language Ecosystems - **Go Ecosystem**: Gin, Echo, Fiber, Buffalo framework support - **Rust Ecosystem**: Actix-web, Warp, Rocket, Axum content generation - **Java Ecosystem**: Spring Boot, Quarkus, Micronaut, Play Framework - **C# Ecosystem**: ASP.NET Core, Entity Framework, Blazor - **Ruby Ecosystem**: Rails, Sinatra, Hanami framework support - **PHP Ecosystem**: Laravel, Symfony, CodeIgniter patterns ### DevOps and Infrastructure Expansion - **Extended Container Support**: Buildah, Skopeo, LXC/LXD integration - **Advanced Orchestration**: Nomad, Docker Swarm, Cloud Foundry support - **CI/CD Platforms**: Jenkins, GitLab CI, Azure DevOps, CircleCI integration - **Infrastructure Tools**: Terraform, Pulumi, CloudFormation content generation - **Service Mesh**: Istio, Linkerd, Consul Connect documentation patterns - **Monitoring Stack**: Prometheus, Grafana, ELK Stack, Jaeger integration guides ### Community and Learning Features - **Content Quality Feedback**: User ratings and improvement suggestions - **Template Sharing**: Community-contributed content templates - **Usage Analytics**: Track which content types provide most value - **Personalization**: Adapt content style to team preferences and expertise level ### Community Ecosystem and Contributions - **Language Extension Registry**: Centralized repository for community language support - **Contribution Tooling**: CLI tools for scaffolding new language extensions - **Validation Pipeline**: Automated testing and quality assurance for contributions - **Community Governance**: Language maintainer program and review processes - **Documentation Portal**: Comprehensive guides for extending DocuMCP capabilities - **Template Marketplace**: Sharing and discovery of specialized content templates ### Enterprise Features - **Custom Content Standards**: Organization-specific content templates and style guides - **Multi-language Support**: Generate content in multiple languages - **Integration APIs**: Connect with existing documentation management systems - **Approval Workflows**: Review and approval processes for generated content ## Success Metrics ### User Value Metrics - **Time to Usable Documentation**: Target < 30 minutes (vs. 8-20 hours manually) - **Content Completeness**: 60-80% populated content out of the box - **User Satisfaction**: 85%+ positive feedback on generated content quality - **Adoption Rate**: 90%+ of users use content population vs. structure-only ### Technical Metrics - **Content Accuracy**: 80%+ technical accuracy for generated code examples - **Framework Coverage**: Support 95% of detected JavaScript/TypeScript frameworks - **DevOps Tool Coverage**: Support 90% of detected containerization and orchestration tools - **Performance**: Content generation completes within 30 seconds - **Error Rate**: < 5% content generation failures ### Business Metrics - **Competitive Differentiation**: Only tool providing intelligent content population - **Market Position**: Establish DocuMCP as "intelligent documentation assistant" - **User Retention**: Increase from documentation structure to full workflow adoption - **Community Growth**: Attract technical writers and documentation specialists ## References - [ADR-002: Multi-Layered Repository Analysis Engine Design](002-repository-analysis-engine.md) - [ADR-004: Diataxis Framework Integration](004-diataxis-framework-integration.md) - [ADR-006: MCP Tools API Design](006-mcp-tools-api-design.md) - [Diataxis Framework Documentation](https://diataxis.fr/) - [Technical Writing Best Practices](https://developers.google.com/tech-writing) - [Documentation as Code Principles](https://www.writethedocs.org/guide/docs-as-code/)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/documcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server