cognee-mcp

import statistics import time import tracemalloc from typing import Any, Callable, Dict import psutil def benchmark_function(func: Callable, *args, num_runs: int = 5) -> Dict[str, Any]: """ Benchmark a function for memory usage and computational performance. Args: func: Function to benchmark *args: Arguments to pass to the function num_runs: Number of times to run the benchmark Returns: Dictionary containing benchmark metrics """ execution_times = [] peak_memory_usages = [] cpu_percentages = [] process = psutil.Process() for _ in range(num_runs): # Start memory tracking tracemalloc.start() # Measure execution time and CPU usage start_time = time.perf_counter() start_cpu_time = process.cpu_times() end_cpu_time = process.cpu_times() end_time = time.perf_counter() # Calculate metrics execution_time = end_time - start_time cpu_time = (end_cpu_time.user + end_cpu_time.system) - ( start_cpu_time.user + start_cpu_time.system ) current, peak = tracemalloc.get_traced_memory() # Store results execution_times.append(execution_time) peak_memory_usages.append(peak / 1024 / 1024) # Convert to MB cpu_percentages.append((cpu_time / execution_time) * 100) tracemalloc.stop() analysis = { "mean_execution_time": statistics.mean(execution_times), "mean_peak_memory_mb": statistics.mean(peak_memory_usages), "mean_cpu_percent": statistics.mean(cpu_percentages), "num_runs": num_runs, } if num_runs > 1: analysis["std_execution_time"] = statistics.stdev(execution_times) return analysis