cognee-mcp
by topoteretes
<div align="center">
<a href="https://github.com/topoteretes/cognee">
<img src="https://raw.githubusercontent.com/topoteretes/cognee/refs/heads/dev/assets/cognee-logo-transparent.png" alt="Cognee Logo" height="60">
</a>
<br />
cognee - memory layer for AI apps and Agents
<p align="center">
<a href="https://cognee.ai">Learn more</a>
·
<a href="https://discord.gg/NQPKmU5CCg">Join Discord</a>
·
<a href="https://www.youtube.com/watch?v=1bezuvLwJmw&t=2s">Demo</a>
</p>
[](https://GitHub.com/topoteretes/cognee/network/)
[](https://GitHub.com/topoteretes/cognee/stargazers/)
[](https://GitHub.com/topoteretes/cognee/commit/)
[](https://github.com/topoteretes/cognee/tags/)
[](https://pepy.tech/project/cognee)
[](https://github.com/topoteretes/cognee/blob/main/LICENSE)
[](https://github.com/topoteretes/cognee/graphs/contributors)
AI Agent responses you can rely on.
Build dynamic Agent memory using scalable, modular ECL (Extract, Cognify, Load) pipelines.
More on [use-cases](https://docs.cognee.ai/use_cases).
<div style="text-align: center">
<img src="https://raw.githubusercontent.com/topoteretes/cognee/refs/heads/dev/assets/cognee_benefits.png" alt="Why cognee?" width="100%" />
</div>
</div>
## Features
- Interconnect and retrieve your past conversations, documents, images and audio transcriptions
- Reduce hallucinations, developer effort, and cost.
- Load data to graph and vector databases using only Pydantic
- Manipulate your data while ingesting from 30+ data sources
## Get Started
Get started quickly with a Google Colab <a href="https://colab.research.google.com/drive/1g-Qnx6l_ecHZi0IOw23rg0qC4TYvEvWZ?usp=sharing">notebook</a> or <a href="https://github.com/topoteretes/cognee-starter">starter repo</a>
## Contributing
Your contributions are at the core of making this a true open source project. Any contributions you make are **greatly appreciated**. See [`CONTRIBUTING.md`](CONTRIBUTING.md) for more information.
## 📦 Installation
You can install Cognee using either **pip**, **poetry**, **uv** or any other python package manager.
### With pip
```bash
pip install cognee
```
## 💻 Basic Usage
### Setup
```
import os
os.environ["LLM_API_KEY"] = "YOUR OPENAI_API_KEY"
```
You can also set the variables by creating .env file, using our <a href="https://github.com/topoteretes/cognee/blob/main/.env.template">template.</a>
To use different LLM providers, for more info check out our <a href="https://docs.cognee.ai">documentation</a>
### Simple example
Add LLM_API_KEY to .env using the command bellow.
```
echo "LLM_API_KEY=YOUR_OPENAI_API_KEY" > .env
```
You can see available env variables in the repository `.env.template` file.
This script will run the default pipeline:
```python
import cognee
import asyncio
from cognee.modules.search.types import SearchType
async def main():
# Create a clean slate for cognee -- reset data and system state
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
# cognee knowledge graph will be created based on this text
text = """
Natural language processing (NLP) is an interdisciplinary
subfield of computer science and information retrieval.
"""
print("Adding text to cognee:")
print(text.strip())
# Add the text, and make it available for cognify
await cognee.add(text)
# Use LLMs and cognee to create knowledge graph
await cognee.cognify()
print("Cognify process complete.\n")
query_text = "Tell me about NLP"
print(f"Searching cognee for insights with query: '{query_text}'")
# Query cognee for insights on the added text
search_results = await cognee.search(
query_text=query_text, query_type=SearchType.INSIGHTS
)
print("Search results:")
# Display results
for result_text in search_results:
print(result_text)
# Example output:
# ({'id': UUID('bc338a39-64d6-549a-acec-da60846dd90d'), 'updated_at': datetime.datetime(2024, 11, 21, 12, 23, 1, 211808, tzinfo=datetime.timezone.utc), 'name': 'natural language processing', 'description': 'An interdisciplinary subfield of computer science and information retrieval.'}, {'relationship_name': 'is_a_subfield_of', 'source_node_id': UUID('bc338a39-64d6-549a-acec-da60846dd90d'), 'target_node_id': UUID('6218dbab-eb6a-5759-a864-b3419755ffe0'), 'updated_at': datetime.datetime(2024, 11, 21, 12, 23, 15, 473137, tzinfo=datetime.timezone.utc)}, {'id': UUID('6218dbab-eb6a-5759-a864-b3419755ffe0'), 'updated_at': datetime.datetime(2024, 11, 21, 12, 23, 1, 211808, tzinfo=datetime.timezone.utc), 'name': 'computer science', 'description': 'The study of computation and information processing.'})
# (...)
#
# It represents nodes and relationships in the knowledge graph:
# - The first element is the source node (e.g., 'natural language processing').
# - The second element is the relationship between nodes (e.g., 'is_a_subfield_of').
# - The third element is the target node (e.g., 'computer science').
if __name__ == '__main__':
asyncio.run(main())
```
For more advanced usage, have a look at our <a href="https://docs.cognee.ai"> documentation</a>.
## Understand our architecture
<div style="text-align: center">
<img src="assets/cognee_diagram.png" alt="cognee concept diagram" width="100%" />
</div>
## Demos
What is AI memory:
[Learn about cognee](https://github.com/user-attachments/assets/8b2a0050-5ec4-424c-b417-8269971503f0)
## Code of Conduct
We are committed to making open source an enjoyable and respectful experience for our community. See <a href="https://github.com/topoteretes/cognee/blob/main/CODE_OF_CONDUCT.md"><code>CODE_OF_CONDUCT</code></a> for more information.
## 💫 Contributors
<a href="https://github.com/topoteretes/cognee/graphs/contributors">
<img alt="contributors" src="https://contrib.rocks/image?repo=topoteretes/cognee"/>
</a>
## Star History
[](https://star-history.com/#topoteretes/cognee&Date)