Skip to main content
Glama
todo-for-ai

Todo for AI MCP Server

by todo-for-ai

Todo for AI MCP Server

中文版本 | English

A Model Context Protocol (MCP) server that provides AI assistants with access to the Todo for AI task management system. This allows AI assistants to retrieve tasks, get project information, create new tasks, and submit task feedback through a standardized interface.

🚀 Try it now: Visit https://todo4ai.org/ to experience our product!

Features

  • 🔍 Get Project Tasks: Retrieve pending tasks for a specific project with status filtering

  • 📋 Get Task Details: Fetch detailed information about individual tasks with project context

  • Create Tasks: Create new tasks with full metadata support

  • Submit Feedback: Update task status and provide completion feedback

  • 📊 Project Information: Get comprehensive project statistics and recent tasks

  • 🔄 Automatic Retry: Built-in retry mechanism for network failures

  • 📝 Comprehensive Logging: Detailed logging with configurable levels

  • ⚙️ Flexible Configuration: Environment variables and config file support

  • 🛡️ Type Safety: Full TypeScript support with strict type checking

  • 🚀 Performance: Optimized build with incremental compilation

  • 🌐 HTTP Transport: Modern HTTP-based communication using Streamable HTTP protocol

  • 🔒 Security: DNS rebinding protection, CORS support, and origin validation

  • 📡 Real-time: Server-Sent Events (SSE) support for real-time communication

  • 🔄 Session Management: Automatic session handling with timeout and cleanup

Installation

npm install -g @todo-for-ai/mcp

From Source

git clone <repository-url> cd todo-mcp npm install npm run build npm link

Configuration

Transport Type

The MCP server uses HTTP Transport: Modern HTTP-based communication with Server-Sent Events (SSE) support for real-time communication.

Environment Variables

Create a .env file or set environment variables:

# Required: API authentication token TODO_API_TOKEN=your-api-token # Optional: Todo API base URL (default: https://todo4ai.org/todo-for-ai/api/v1) TODO_API_BASE_URL=http://localhost:50110/todo-for-ai/api/v1 # Optional: API timeout in milliseconds (default: 10000) TODO_API_TIMEOUT=10000 # HTTP Transport Configuration # Optional: HTTP server port (default: 3000) TODO_HTTP_PORT=3000 # Optional: HTTP server host (default: 127.0.0.1) TODO_HTTP_HOST=127.0.0.1 # Optional: Session timeout in milliseconds (default: 300000 = 5 minutes) TODO_SESSION_TIMEOUT=300000 # Optional: Enable DNS rebinding protection (default: true) TODO_DNS_PROTECTION=true # Optional: Allowed origins for CORS (comma-separated, default: http://localhost:*,https://localhost:*) TODO_ALLOWED_ORIGINS=http://localhost:*,https://localhost:* # Optional: Maximum concurrent connections (default: 100) TODO_MAX_CONNECTIONS=100 # Optional: Log level (default: info) LOG_LEVEL=info # Optional: Environment (default: development) NODE_ENV=development

Configuration File

Alternatively, create a config.json file:

{ "apiBaseUrl": "https://todo4ai.org/todo-for-ai/api/v1", "apiTimeout": 10000, "apiToken": "your-api-token", "logLevel": "info" }

Usage

Command Line

HTTP Transport

# Start with HTTP transport on default port 3000 todo-for-ai-mcp --api-token your-token # HTTP transport with custom port and host todo-for-ai-mcp --api-token your-token --http-port 8080 --http-host 0.0.0.0 # HTTP transport with session timeout and security options todo-for-ai-mcp --api-token your-token \ --session-timeout 600000 \ --dns-protection \ --allowed-origins "http://localhost:*,https://localhost:*" # Using environment variables for HTTP transport TODO_API_TOKEN=your-token \ TODO_HTTP_PORT=3000 \ TODO_HTTP_HOST=127.0.0.1 \ todo-for-ai-mcp # With environment variables TODO_API_BASE_URL=http://your-server:8080 TODO_API_TOKEN=your-token todo-for-ai-mcp # With command line arguments todo-for-ai-mcp --api-base-url http://your-server:8080 --api-token your-token --log-level debug # Mixed configuration (CLI args take priority over environment variables) TODO_API_BASE_URL=http://localhost:50110 todo-for-ai-mcp --api-token your-token --log-level info

Configuration Options

The MCP server supports configuration through both command line arguments and environment variables, with the following priority order:

Priority: Command Line Arguments > Environment Variables > Defaults

Configuration

CLI Argument

Environment Variable

Default

API Base URL

--api-base-url, --base-url

TODO_API_BASE_URL

https://todo4ai.org/todo-for-ai/api/v1

API Token

--api-token, --token

TODO_API_TOKEN

Required

API Timeout

--api-timeout, --timeout

TODO_API_TIMEOUT

10000 (ms)

Log Level

--log-level

LOG_LEVEL

info

| HTTP Port | --http-port | TODO_HTTP_PORT | 3000 | | HTTP Host | --http-host | TODO_HTTP_HOST | 127.0.0.1 | | Session Timeout | --session-timeout | TODO_SESSION_TIMEOUT | 300000 (ms) | | DNS Protection | --dns-protection | TODO_DNS_PROTECTION | true (for http) | | Allowed Origins | --allowed-origins | TODO_ALLOWED_ORIGINS | http://localhost:*,https://localhost:* | | Max Connections | --max-connections | TODO_MAX_CONNECTIONS | 100 |

Additional Options:

Option

CLI Argument

Description

Help

--help, -h

Show help message and exit

Version

--version, -v

Show version information and exit

Examples:

# Show help information todo-for-ai-mcp --help todo-for-ai-mcp -h # Show version information todo-for-ai-mcp --version todo-for-ai-mcp -v # Using command line arguments (API token is required) todo-for-ai-mcp --api-token your-token --log-level debug # Using environment variables export TODO_API_TOKEN="your-token" export LOG_LEVEL="info" todo-for-ai-mcp # Using custom API base URL todo-for-ai-mcp --api-base-url http://localhost:50110/todo-for-ai/api/v1 --api-token your-token # Mixed approach (CLI args override env vars) TODO_API_TOKEN=your-token todo-for-ai-mcp --log-level debug

HTTP Transport Usage

When using HTTP transport, the MCP server runs as a standalone HTTP server that can be accessed via REST API and Server-Sent Events (SSE).

Starting HTTP Server

# Start HTTP server on default port 3000 todo-for-ai-mcp --api-token your-token --transport http # The server will be available at: # - Health check: http://127.0.0.1:3000/health # - MCP endpoint: http://127.0.0.1:3000/mcp

HTTP Endpoints

  • GET /health: Health check endpoint

  • POST /mcp: Client-to-server communication (JSON-RPC)

  • GET /mcp: Server-to-client notifications (SSE)

  • DELETE /mcp: Session termination

Session Management

HTTP transport uses session-based communication:

  1. Initialize: Send an initialize request to create a new session

  2. Session ID: Server returns a session ID in the Mcp-Session-Id header

  3. Subsequent requests: Include the session ID in all future requests

  4. Cleanup: Sessions automatically expire after the configured timeout

Example HTTP Client Usage

// Initialize session const initResponse = await fetch('http://127.0.0.1:3000/mcp', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ jsonrpc: '2.0', id: 1, method: 'initialize', params: { protocolVersion: '2024-11-05', capabilities: { tools: {} }, clientInfo: { name: 'my-client', version: '1.0.0' } } }) }); const sessionId = initResponse.headers.get('Mcp-Session-Id'); // Use session for subsequent requests const toolsResponse = await fetch('http://127.0.0.1:3000/mcp', { method: 'POST', headers: { 'Content-Type': 'application/json', 'Mcp-Session-Id': sessionId }, body: JSON.stringify({ jsonrpc: '2.0', id: 2, method: 'tools/list', params: {} }) });

IDE Integration

Claude Desktop

Note: Claude Desktop currently supports Stdio transport. For HTTP transport support, you'll need to start the server separately and use a custom MCP client that supports HTTP transport.

Traditional Stdio configuration (if supported):

{ "mcpServers": { "todo-for-ai": { "command": "npx", "args": [ "-y", "@todo-for-ai/mcp@latest", "--api-token", "your-api-token-here" ] } } }

Alternative with environment variables:

{ "mcpServers": { "todo-for-ai": { "command": "npx", "args": ["-y", "@todo-for-ai/mcp@latest"], "env": { "TODO_API_TOKEN": "your-api-token-here" } } } }

For local development (custom API base URL):

{ "mcpServers": { "todo-for-ai": { "command": "npx", "args": [ "-y", "@todo-for-ai/mcp@latest", "--api-base-url", "http://localhost:50110/todo-for-ai/api/v1", "--api-token", "your-api-token-here" ] } } }

HTTP transport setup:

  1. Start the HTTP server separately:

# Terminal 1: Start the MCP server in HTTP mode TODO_API_TOKEN=your-token todo-for-ai-mcp --http-port 3000
  1. The server will be available at http://127.0.0.1:3000/mcp for custom MCP clients that support HTTP transport.

Cursor IDE

Add to your Cursor configuration:

{ "mcpServers": { "todo-for-ai": { "command": "npx", "args": [ "-y", "@todo-for-ai/mcp@latest", "--api-token", "your-api-token-here" ] } } }

Local Development

For development with local Todo for AI server:

{ "mcpServers": { "todo-for-ai-local": { "command": "node", "args": ["/path/to/todo-mcp/dist/index.js"], "env": { "TODO_API_BASE_URL": "http://localhost:50110", "LOG_LEVEL": "debug" } } } }

Available Tools

1. get_project_tasks_by_name

Get all pending tasks for a project by name.

Parameters:

  • project_name (string, required): Name of the project

  • status_filter (array, optional): Filter by task status (default: ["todo", "in_progress", "review"])

Example:

{ "project_name": "My Project", "status_filter": ["todo", "in_progress"] }

2. get_task_by_id

Get detailed information about a specific task.

Parameters:

  • task_id (integer, required): ID of the task to retrieve

Example:

{ "task_id": 123 }

3. create_task

Create a new task in the specified project.

Parameters:

  • project_id (integer, required): ID of the project

  • title (string, required): Task title

  • content (string, optional): Task content/description

  • status (string, optional): Initial status (default: "todo")

  • priority (string, optional): Task priority (default: "medium")

  • due_date (string, optional): Due date in YYYY-MM-DD format

  • assignee (string, optional): Person assigned to the task

  • tags (array, optional): Tags associated with the task

  • is_ai_task (boolean, optional): Whether this is an AI task (default: true)

  • ai_identifier (string, optional): AI identifier (default: "MCP Client")

Example:

{ "project_id": 10, "title": "Implement new feature", "content": "Add user authentication to the application", "status": "todo", "priority": "high", "due_date": "2024-12-31", "tags": ["authentication", "security"] }

4. submit_task_feedback

Submit feedback and update status for a task.

Parameters:

  • task_id (integer, required): ID of the task

  • project_name (string, required): Name of the project

  • feedback_content (string, required): Feedback description

  • status (string, required): New status ("in_progress", "review", "done", "cancelled")

  • ai_identifier (string, optional): AI identifier (default: "MCP Client")

Example:

{ "task_id": 123, "project_name": "My Project", "feedback_content": "Completed the implementation as requested", "status": "done", "ai_identifier": "Claude" }

5. get_project_info

Get detailed project information including statistics and recent tasks.

Parameters:

  • project_id (integer, optional): ID of the project to retrieve

  • project_name (string, optional): Name of the project to retrieve

Note: Either project_id or project_name must be provided.

Example:

{ "project_name": "My Project" }

Development

Prerequisites

  • Node.js 18+

  • npm or yarn

  • Todo for AI backend server running

Setup

# Clone and install git clone <repository-url> cd todo-mcp npm install # Copy environment file cp .env.example .env # Edit .env with your configuration # Development mode npm run dev # Build npm run build # Test npm test # Lint npm run lint

Project Structure

todo-mcp/ ├── src/ │ ├── index.ts # Main entry point │ ├── server.ts # MCP server implementation │ ├── api-client.ts # Todo API client │ ├── config.ts # Configuration management │ ├── logger.ts # Logging utilities │ ├── error-handler.ts # Error handling │ └── types.ts # TypeScript types ├── dist/ # Compiled JavaScript ├── package.json ├── tsconfig.json ├── .env.example └── README.md

Troubleshooting

Common Issues

  1. Connection Failed

    • Ensure Todo for AI backend is running

    • Check TODO_API_BASE_URL is correct

    • Verify network connectivity

  2. Authentication Errors

    • Check if API token is required

    • Verify TODO_API_TOKEN is set correctly

  3. Tool Not Found

    • Ensure MCP server is properly registered in IDE

    • Check IDE configuration syntax

    • Restart IDE after configuration changes

Debug Mode

Enable debug logging:

LOG_LEVEL=debug todo-for-ai-mcp

Health Check

Test connection to Todo API:

curl http://localhost:50110/api/health

License

MIT License - see LICENSE file for details.

Contributing

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes

  4. Add tests

  5. Submit a pull request

Support

For issues and questions:

  • Create an issue on GitHub

  • Check the troubleshooting section

  • Review the logs with debug mode enabled


🌟 Ready to supercharge your AI workflow? Visit https://todo4ai.org/ and experience the power of AI-driven task management!

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/todo-for-ai/todo-for-ai-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server