"""Handler for automation and orchestration operations."""
from datetime import datetime, timedelta
from typing import Any
import hashlib
from ludus_mcp.core.client import LudusAPIClient
from ludus_mcp.utils.logging import get_logger
logger = get_logger(__name__)
class AutomationOrchestrationHandler:
"""Handler for automation and orchestration."""
def __init__(self, client: LudusAPIClient) -> None:
"""Initialize the automation orchestration handler."""
self.client = client
async def create_deployment_pipeline(
self,
pipeline_name: str,
stages: list[dict],
user_id: str | None = None
) -> dict[str, Any]:
"""Define multi-stage deployment pipelines."""
try:
pipeline_id = hashlib.md5(f"{pipeline_name}{datetime.now()}".encode()).hexdigest()[:8]
# Validate stages
for i, stage in enumerate(stages):
if "name" not in stage:
return {"status": "error", "error": f"Stage {i} missing 'name' field"}
if "action" not in stage:
return {"status": "error", "error": f"Stage {i} missing 'action' field"}
pipeline = {
"pipeline_id": pipeline_id,
"name": pipeline_name,
"created_at": datetime.now().isoformat(),
"stages": stages,
"total_stages": len(stages)
}
return {
"status": "success",
"timestamp": datetime.now().isoformat(),
"pipeline": pipeline,
"execution_guide": {
"manual": "Execute each stage using corresponding ludus tools",
"automated": "Use CI/CD platform (GitHub Actions, GitLab CI) to orchestrate",
"example": "Stage 1: ludus.update_range_config -> Stage 2: ludus.deploy_range -> Stage 3: ludus.start_testing"
}
}
except Exception as e:
logger.error(f"Error creating deployment pipeline: {e}")
return {"status": "error", "error": str(e)}
async def schedule_range_tasks(
self,
task_type: str,
schedule: str,
parameters: dict | None = None,
user_id: str | None = None
) -> dict[str, Any]:
"""Schedule recurring tasks (start/stop, snapshots)."""
try:
valid_tasks = ["power_on", "power_off", "snapshot", "health_check"]
if task_type not in valid_tasks:
return {
"status": "error",
"error": f"Invalid task_type. Must be one of: {valid_tasks}"
}
# Validate cron schedule
schedule_parts = schedule.split()
if len(schedule_parts) != 5:
return {
"status": "error",
"error": "Invalid cron schedule format. Expected: 'minute hour day month weekday'"
}
task_id = hashlib.md5(f"{task_type}{schedule}{datetime.now()}".encode()).hexdigest()[:8]
task_config = {
"task_id": task_id,
"task_type": task_type,
"schedule": schedule,
"parameters": parameters or {},
"created_at": datetime.now().isoformat(),
"enabled": True,
"next_run": self._estimate_next_run(schedule)
}
return {
"status": "success",
"timestamp": datetime.now().isoformat(),
"task_configuration": task_config,
"implementation": {
"crontab": f"{schedule} ludus-fastmcp-task {task_type}",
"systemd_timer": "Create systemd timer unit",
"k8s_cronjob": "Deploy as Kubernetes CronJob"
}
}
except Exception as e:
logger.error(f"Error scheduling range task: {e}")
return {"status": "error", "error": str(e)}
async def auto_scaling(
self,
rules: list[dict],
user_id: str | None = None
) -> dict[str, Any]:
"""Define auto-scaling rules based on resource usage."""
try:
# Validate rules
for i, rule in enumerate(rules):
required_fields = ["metric", "threshold", "action"]
for field in required_fields:
if field not in rule:
return {
"status": "error",
"error": f"Rule {i} missing required field: {field}"
}
scaling_config = {
"enabled": True,
"rules": rules,
"created_at": datetime.now().isoformat(),
"monitoring_interval_seconds": 60
}
return {
"status": "success",
"timestamp": datetime.now().isoformat(),
"scaling_configuration": scaling_config,
"note": "Auto-scaling requires external monitoring and orchestration system",
"implementation_guide": {
"metrics_collection": "Use ludus.get_range_metrics periodically",
"decision_engine": "Compare metrics against thresholds",
"actions": "Execute ludus.update_range_config to adjust resources"
},
"example_rule": {
"metric": "cpu_utilization",
"threshold": 80,
"comparison": "greater_than",
"action": "increase_cpus",
"action_parameters": {"increment": 1}
}
}
except Exception as e:
logger.error(f"Error configuring auto-scaling: {e}")
return {"status": "error", "error": str(e)}
async def health_checks(
self,
check_interval_minutes: int = 5,
alert_on_failure: bool = True,
user_id: str | None = None
) -> dict[str, Any]:
"""Automated health checks with alerting."""
try:
range_info = await self.client.get_range(user_id)
health_check_config = {
"enabled": True,
"interval_minutes": check_interval_minutes,
"alert_on_failure": alert_on_failure,
"checks": [
{
"name": "range_state",
"description": "Check if range is in SUCCESS state",
"endpoint": "ludus.get_range",
"expected": "rangeState == SUCCESS"
},
{
"name": "vm_health",
"description": "Check if all VMs are running",
"endpoint": "ludus.get_range",
"expected": "all VMs have status == running"
},
{
"name": "deployment_logs",
"description": "Check for errors in logs",
"endpoint": "ludus.get_range_logs",
"expected": "no ERROR or FAILED messages"
}
],
"alert_channels": {
"email": "Configure SMTP settings",
"slack": "Use ludus.slack_notifications",
"webhook": "Use ludus.webhook_integration"
}
}
# Perform initial health check
vms = range_info.get("VMs", [])
running_vms = sum(1 for vm in vms if vm.get("status") == "running")
health_status = "healthy" if running_vms == len(vms) else "degraded"
return {
"status": "success",
"timestamp": datetime.now().isoformat(),
"health_check_configuration": health_check_config,
"current_health": {
"status": health_status,
"range_state": range_info.get("rangeState"),
"vms_running": f"{running_vms}/{len(vms)}"
},
"implementation": {
"polling": "Use cron or systemd timer to run checks",
"monitoring": "Integrate with Prometheus/Grafana for visualization"
}
}
except Exception as e:
logger.error(f"Error configuring health checks: {e}")
return {"status": "error", "error": str(e)}
def _estimate_next_run(self, schedule: str) -> str:
"""Estimate next run time (simplified)."""
# In production, use croniter library
return f"Estimated based on schedule: {schedule}"