Skip to main content
Glama

๐Ÿง  Farnsworth: Your Claude Companion AI

Give Claude superpowers: persistent memory, model swarms, multimodal understanding, and self-evolution.

Version Python License Claude Code Docker Models

Documentation โ€ข Roadmap โ€ข Contributing โ€ข Docker


๐ŸŽฏ What is Farnsworth?

Farnsworth is a companion AI system that integrates with Claude Code to give Claude capabilities it doesn't have on its own:

Without Farnsworth

With Farnsworth

๐Ÿšซ Claude forgets everything between sessions

โœ… Claude remembers your preferences forever

๐Ÿšซ Claude is a single model

โœ… Model Swarm: 12+ models collaborate via PSO

๐Ÿšซ Claude can't see images or hear audio

โœ… Multimodal: vision (CLIP/BLIP) + voice (Whisper)

๐Ÿšซ Claude never learns from feedback

โœ… Claude evolves and adapts to you

๐Ÿšซ Single user only

โœ… Team collaboration with shared memory

๐Ÿšซ High RAM/VRAM requirements

โœ… Runs on <2GB RAM with efficient models

All processing happens locally on your machine. Your data never leaves your computer.


โœจ What's New in v0.5.0

  • ๐Ÿ Model Swarm - PSO-based collaborative inference with multiple small models

  • ๐Ÿ”ฎ Proactive Intelligence - Anticipatory suggestions based on context and habits

  • ๐Ÿš€ 12+ New Models - Phi-4-mini, SmolLM2, Qwen3-4B, TinyLlama, BitNet 2B

  • โšก Ultra-Efficient - Run on <2GB RAM with TinyLlama, Qwen3-0.6B

  • ๐ŸŽฏ Smart Routing - Mixture-of-Experts automatically picks best model per task

  • ๐Ÿ”„ Speculative Decoding - 2.5x speedup with draft+verify pairs

  • ๐Ÿ“Š Hardware Profiles - Auto-configure based on your available resources

Previously Added (v0.4.0)

  • ๐Ÿ–ผ๏ธ Vision Module - CLIP/BLIP image understanding, VQA, OCR

  • ๐ŸŽค Voice Module - Whisper transcription, speaker diarization, TTS

  • ๐Ÿ“ฆ Docker Support - One-command deployment with GPU support

  • ๐Ÿ‘ฅ Team Collaboration - Shared memory pools, multi-user sessions


๐Ÿ Model Swarm: Collaborative Multi-Model Inference

The Model Swarm system enables multiple small models to work together, achieving better results than any single model:

Swarm Strategies

Strategy

Description

Best For

PSO Collaborative

Particle Swarm Optimization guides model selection

Complex tasks

Parallel Vote

Run 3+ models, vote on best response

Quality-critical

Mixture of Experts

Route to specialist per task type

General use

Speculative Ensemble

Fast model drafts, strong model verifies

Speed + quality

Fastest First

Start fast, escalate if confidence low

Low latency

Confidence Fusion

Weighted combination of outputs

High reliability


๐Ÿ—๏ธ Architecture & Privacy

Farnsworth runs 100% locally on your machine.

  • No Server Costs: You do not need to pay for hosting.

  • Your Data: All memories and files stay on your computer.

  • How it connects: The Claude Desktop App spawns Farnsworth as a background process using the Model Context Protocol (MCP).


Supported Models (Jan 2025)

Model

Params

RAM

Strengths

Phi-4-mini-reasoning

3.8B

6GB

Rivals o1-mini in math/reasoning

Phi-4-mini

3.8B

6GB

GPT-3.5 class, 128K context

DeepSeek-R1-1.5B

1.5B

4GB

o1-style reasoning, MIT license

Qwen3-4B

4B

5GB

MMLU-Pro 74%, multilingual

SmolLM2-1.7B

1.7B

3GB

Best quality at size

Qwen3-0.6B

0.6B

2GB

Ultra-light, 100+ languages

TinyLlama-1.1B

1.1B

2GB

Fastest, edge devices

BitNet-2B

2B

1GB

Native 1-bit, 5-7x CPU speedup

Gemma-3n-E2B

2B eff

4GB

Multimodal (text/image/audio)

Phi-4-multimodal

5.6B

8GB

Vision + speech + reasoning

Hardware Profiles

Farnsworth auto-configures based on your hardware:

minimal: # <4GB RAM: TinyLlama, Qwen3-0.6B cpu_only: # 8GB+ RAM, no GPU: BitNet, SmolLM2 low_vram: # 2-4GB VRAM: DeepSeek-R1, Qwen3-0.6B medium_vram: # 4-8GB VRAM: Phi-4-mini, Qwen3-4B high_vram: # 8GB+ VRAM: Full swarm with verification

โšก Quick Start

Farnsworth is available on PyPI. This is the easiest way to get started.

pip install farnsworth-ai

Running the Server:

# Start the MCP server farnsworth-server # Or customize configuration farnsworth-server --debug --port 8000

๐Ÿณ Option 2: Docker

git clone https://github.com/timowhite88/Farnsworth.git cd Farnsworth docker-compose -f docker/docker-compose.yml up -d

๐Ÿ› ๏ธ Option 3: Source (For Developers)

git clone https://github.com/timowhite88/Farnsworth.git cd Farnsworth pip install -r requirements.txt

๐Ÿ”Œ Configure Claude Code

Add to your Claude Code MCP settings (usually found in claude_desktop_config.json):

For PyPI Install:

{ "mcpServers": { "farnsworth": { "command": "farnsworth-server", "args": [], "env": { "FARNSWORTH_LOG_LEVEL": "INFO" } } } }

๐Ÿ“– Full Installation Guide โ†’


๐ŸŒŸ Key Features

๐Ÿง  Advanced Memory System

Claude finally remembers! Multi-tier hierarchical memory:

Memory Type

Description

Working Memory

Current conversation context

Episodic Memory

Timeline of interactions, "on this day" recall

Semantic Layers

5-level abstraction hierarchy

Knowledge Graph

Entities, relationships, temporal edges

Archival Memory

Permanent vector-indexed storage

Memory Dreaming

Background consolidation during idle time

๐Ÿค– Agent Swarm (11 Specialists)

Claude can delegate tasks to AI agents:

Core Agents

Description

Code Agent

Programming, debugging, code review

Reasoning Agent

Logic, math, step-by-step analysis

Research Agent

Information gathering, summarization

Creative Agent

Writing, brainstorming, ideation

Advanced Agents (v0.3+)

Description

Planner Agent

Task decomposition, dependency tracking

Critic Agent

Quality scoring, iterative refinement

Web Agent

Intelligent browsing, form filling

FileSystem Agent

Project understanding, smart search

Collaboration (v0.3+)

Description

Agent Debates

Multi-perspective synthesis

Specialization Learning

Skill development, task routing

Hierarchical Teams

Manager coordination, load balancing

๐Ÿ–ผ๏ธ Vision Understanding (v0.4+)

See and understand images:

  • CLIP Integration - Zero-shot classification, image embeddings

  • BLIP Integration - Captioning, visual question answering

  • OCR - Extract text from images (EasyOCR)

  • Scene Graphs - Extract objects and relationships

  • Image Similarity - Compare and search images

๐ŸŽค Voice Interaction (v0.4+)

Hear and speak:

  • Whisper Transcription - Real-time and batch processing

  • Speaker Diarization - Identify different speakers

  • Text-to-Speech - Multiple voice options

  • Voice Commands - Natural language control

  • Continuous Listening - Hands-free mode

๐Ÿ‘ฅ Team Collaboration (v0.4+)

Work together with shared AI:

  • Shared Memory Pools - Team knowledge bases

  • Multi-User Support - Individual profiles and preferences

  • Permission System - Role-based access control

  • Collaborative Sessions - Real-time multi-user interaction

  • Audit Logging - Compliance-ready access trails

๐Ÿ“ˆ Self-Evolution

Farnsworth learns from your feedback and improves automatically:

  • Fitness Tracking - Monitors task success, efficiency, satisfaction

  • Genetic Optimization - Evolves better configurations over time

  • User Avatar - Builds a model of your preferences

  • LoRA Evolution - Adapts model weights to your usage

๐Ÿ” Smart Retrieval (RAG 2.0)

Self-refining retrieval that gets better at finding relevant information:

  • Hybrid Search - Semantic + BM25 keyword search

  • Query Understanding - Intent classification, expansion

  • Multi-hop Retrieval - Complex question answering

  • Context Compression - Token-efficient memory injection

  • Source Attribution - Confidence scoring


๐Ÿ› ๏ธ Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Claude Code โ”‚ โ”‚ (Your AI Programming Partner) โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ MCP Protocol โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Farnsworth MCP Server โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ Memory โ”‚ โ”‚ Agent โ”‚ โ”‚Evolution โ”‚ โ”‚Multimodalโ”‚ โ”‚ โ”‚ โ”‚ Tools โ”‚ โ”‚ Tools โ”‚ โ”‚ Tools โ”‚ โ”‚ Tools โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ–ผ โ–ผ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Memory โ”‚ โ”‚ Agent โ”‚ โ”‚ Multimodal โ”‚ โ”‚ System โ”‚ โ”‚ Swarm โ”‚ โ”‚ Engine โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Episodic โ”‚ โ”‚ โ€ข Planner โ”‚ โ”‚ โ€ข Vision โ”‚ โ”‚ โ€ข Semantic โ”‚ โ”‚ โ€ข Critic โ”‚ โ”‚ (CLIP/BLIP)โ”‚ โ”‚ โ€ข Knowledge โ”‚ โ”‚ โ€ข Web โ”‚ โ”‚ โ€ข Voice โ”‚ โ”‚ Graph v2 โ”‚ โ”‚ โ€ข FileSystem โ”‚ โ”‚ (Whisper) โ”‚ โ”‚ โ€ข Archival โ”‚ โ”‚ โ€ข Debates โ”‚ โ”‚ โ€ข OCR โ”‚ โ”‚ โ€ข Sharing โ”‚ โ”‚ โ€ข Teams โ”‚ โ”‚ โ€ข TTS โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ–ผ โ–ผ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Evolution โ”‚ โ”‚Collaboration โ”‚ โ”‚ Storage โ”‚ โ”‚ Engine โ”‚ โ”‚ System โ”‚ โ”‚ Backends โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Genetic โ”‚ โ”‚ โ€ข Multi-User โ”‚ โ”‚ โ€ข FAISS โ”‚ โ”‚ Optimizer โ”‚ โ”‚ โ€ข Shared โ”‚ โ”‚ โ€ข ChromaDB โ”‚ โ”‚ โ€ข Fitness โ”‚ โ”‚ Memory โ”‚ โ”‚ โ€ข Redis โ”‚ โ”‚ Tracker โ”‚ โ”‚ โ€ข Sessions โ”‚ โ”‚ โ€ข SQLite โ”‚ โ”‚ โ€ข LoRA โ”‚ โ”‚ โ€ข Permissionsโ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Model Swarm (v0.5+) โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ PSO Collaborative Engine โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Particle positions = model configs โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Velocity = adaptation direction โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Global/personal best tracking โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ Phi-4 โ”‚ โ”‚DeepSeek โ”‚ โ”‚ Qwen3 โ”‚ โ”‚ SmolLM2 โ”‚ โ”‚ โ”‚ โ”‚ mini โ”‚ โ”‚ R1-1.5B โ”‚ โ”‚ 0.6B/4B โ”‚ โ”‚ 1.7B โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚TinyLlama โ”‚ โ”‚ BitNet โ”‚ โ”‚ Gemma โ”‚ โ”‚ Cascade โ”‚ โ”‚ โ”‚ โ”‚ 1.1B โ”‚ โ”‚ 2B(1-bit)โ”‚ โ”‚ 3n-E2B โ”‚ โ”‚ (hybrid) โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿ”ง Tools Available to Claude

Once connected, Claude has access to these tools:

Tool

Description

farnsworth_remember(content, tags)

Store information in long-term memory

farnsworth_recall(query, limit)

Search and retrieve relevant memories

farnsworth_delegate(task, agent_type)

Delegate to specialist agent

farnsworth_evolve(feedback)

Provide feedback for system improvement

farnsworth_status()

Get system health and statistics

farnsworth_vision(image, task)

Analyze images (caption, VQA, OCR)

farnsworth_voice(audio, task)

Process audio (transcribe, diarize)

farnsworth_collaborate(action, ...)

Team collaboration operations

farnsworth_swarm(prompt, strategy)

NEW: Multi-model collaborative inference


๐Ÿ“ฆ Docker Deployment

Multiple deployment profiles available:

# Basic deployment docker-compose -f docker/docker-compose.yml up -d # With GPU support docker-compose -f docker/docker-compose.yml --profile gpu up -d # With Ollama + ChromaDB docker-compose -f docker/docker-compose.yml --profile ollama --profile chromadb up -d # Development mode (hot reload + debugger) docker-compose -f docker/docker-compose.yml --profile dev up -d

See docker/docker-compose.yml for all options.


๐Ÿ“Š Dashboard

Farnsworth includes a Streamlit dashboard for visualization:

python main.py --ui # Or with Docker: docker-compose -f docker/docker-compose.yml --profile ui-only up -d
  • Memory Browser - Search and explore all stored memories

  • Episodic Timeline - Visual history of interactions

  • Knowledge Graph - 3D entity relationships

  • Agent Monitor - Active agents and task history

  • Evolution Dashboard - Fitness metrics and improvement trends

  • Team Collaboration - Shared pools and active sessions

  • Model Swarm Monitor - PSO state, model performance, strategy stats


๐Ÿš€ Roadmap

See ROADMAP.md for detailed plans.

Completed โœ…

  • v0.1.0 - Core memory, agents, evolution

  • v0.2.0 - Enhanced memory (episodic, semantic, sharing)

  • v0.3.0 - Advanced agents (planner, critic, web, filesystem, debates, teams)

  • v0.4.0 - Multimodal (vision, voice) + collaboration + Docker

  • v0.5.0 - Model Swarm + 12 new models + hardware profiles

Coming Next

  • ๐ŸŽฌ Video understanding and summarization

  • ๐Ÿ” Encryption at rest (AES-256)

  • โ˜๏ธ Cloud deployment templates (AWS, Azure, GCP)

  • ๐Ÿ“Š Performance optimization (<100ms recall)


๐Ÿ’ก Why "Farnsworth"?

Named after Professor Hubert J. Farnsworth from Futurama - a brilliant inventor who created countless gadgets and whose catchphrase "Good news, everyone!" perfectly captures what we hope you'll feel when using this tool with Claude.


๐Ÿ“‹ Requirements

Minimum

Recommended

With Full Swarm

Python 3.10+

Python 3.11+

Python 3.11+

4GB RAM

8GB RAM

16GB RAM

2-core CPU

4-core CPU

8-core CPU

5GB storage

20GB storage

50GB storage

-

4GB VRAM

8GB+ VRAM

Supported Platforms: Windows 10+, macOS 11+, Linux

Optional Dependencies:

  • ollama - Local LLM inference (recommended)

  • llama-cpp-python - Direct GGUF inference

  • torch - GPU acceleration

  • transformers - Vision/Voice models

  • playwright - Web browsing agent

  • whisper - Voice transcription


๐Ÿ“„ License

Farnsworth is dual-licensed:

Use Case

License

Personal / Educational / Non-commercial

FREE

Commercial (revenue > $1M or enterprise)

Commercial License Required

See LICENSE for details. For commercial licensing, contact via GitHub.


๐Ÿค Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Priority Areas:

  • Video understanding module

  • Cloud deployment templates

  • Performance benchmarks

  • Additional model integrations

  • Documentation improvements


๐Ÿ“š Documentation


๐Ÿ”— Research References

Model Swarm implementation inspired by:


โญ Star History

If Farnsworth helps you, consider giving it a star! โญ


Built with โค๏ธ for the Claude community

"Good news, everyone!" - Professor Farnsworth

Report Bug โ€ข Request Feature โ€ข Get Commercial License

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/timowhite88/Farnsworth'

If you have feedback or need assistance with the MCP directory API, please join our Discord server