server.py•7.17 kB
#!/usr/bin/env python3
import argparse
import os
from typing import Annotated, Optional
import httpx
import uvicorn
from dotenv import load_dotenv
from mcp.server.fastmcp import FastMCP
from pydantic import Field
# Load environment variables from .env file
load_dotenv()
# Get the backend URL from environment variable or use default
PERPLEXICA_BACKEND_URL = os.getenv(
"PERPLEXICA_BACKEND_URL", "http://localhost:3000/api/search"
)
PERPLEXICA_READ_TIMEOUT = int(os.getenv("PERPLEXICA_READ_TIMEOUT", 60))
# Default model configurations from environment variables
DEFAULT_CHAT_MODEL = None
if os.getenv("PERPLEXICA_CHAT_MODEL_PROVIDER") and os.getenv(
"PERPLEXICA_CHAT_MODEL_NAME"
):
DEFAULT_CHAT_MODEL = {
"provider": os.getenv("PERPLEXICA_CHAT_MODEL_PROVIDER"),
"name": os.getenv("PERPLEXICA_CHAT_MODEL_NAME"),
}
DEFAULT_EMBEDDING_MODEL = None
if os.getenv("PERPLEXICA_EMBEDDING_MODEL_PROVIDER") and os.getenv(
"PERPLEXICA_EMBEDDING_MODEL_NAME"
):
DEFAULT_EMBEDDING_MODEL = {
"provider": os.getenv("PERPLEXICA_EMBEDDING_MODEL_PROVIDER"),
"name": os.getenv("PERPLEXICA_EMBEDDING_MODEL_NAME"),
}
# Create FastMCP server with default settings
mcp = FastMCP("Perplexica", dependencies=["httpx", "mcp", "python-dotenv", "uvicorn"])
async def perplexica_search(
query,
focus_mode,
chat_model=None,
embedding_model=None,
optimization_mode=None,
history=None,
system_instructions=None,
stream=False,
) -> dict:
"""
Search using the Perplexica API
Args:
query (str): The search query
chat_model (dict, optional): Chat model configuration with:
provider: Provider name (e.g., openai, ollama)
name: Model name (e.g., gpt-4o-mini)
customOpenAIBaseURL: Optional custom OpenAI base URL
customOpenAIKey: Optional custom OpenAI API key
embedding_model (dict, optional): Embedding model configuration with:
provider: Provider name (e.g., openai)
name: Model name (e.g., text-embedding-3-small)
customOpenAIBaseURL: Optional custom OpenAI base URL
customOpenAIKey: Optional custom OpenAI API key
focus_mode (str): Search focus mode (webSearch, academicSearch, etc.)
optimization_mode (str, optional): Optimization mode (speed, balanced)
history (list, optional): Conversation history
system_instructions (str, optional): Custom system instructions
stream (bool, optional): Whether to stream responses
Returns:
dict: Search results from Perplexica
"""
# Prepare the request payload
payload = {"query": query, "focusMode": focus_mode}
# Add optional parameters if provided
if chat_model:
payload["chatModel"] = chat_model
if embedding_model:
payload["embeddingModel"] = embedding_model
if optimization_mode:
payload["optimizationMode"] = optimization_mode
else:
payload["optimizationMode"] = "balanced"
if history is not None:
payload["history"] = history
else:
payload["history"] = []
if system_instructions:
payload["systemInstructions"] = system_instructions
if stream is not None:
payload["stream"] = stream
try:
async with httpx.AsyncClient() as client:
response = await client.post(
PERPLEXICA_BACKEND_URL, json=payload, timeout=PERPLEXICA_READ_TIMEOUT
)
response.raise_for_status()
return response.json()
except httpx.HTTPError as e:
return {"error": f"HTTP error occurred: {str(e)}"}
except Exception as e:
return {"error": f"An error occurred: {str(e)}"}
@mcp.tool()
async def search(
query: Annotated[str, Field(description="Search query")],
focus_mode: Annotated[
str,
Field(
description="Focus mode: webSearch, academicSearch, writingAssistant, wolframAlphaSearch, youtubeSearch, redditSearch"
),
],
chat_model: Annotated[
Optional[dict], Field(description="Chat model configuration")
] = DEFAULT_CHAT_MODEL,
embedding_model: Annotated[
Optional[dict], Field(description="Embedding model configuration")
] = DEFAULT_EMBEDDING_MODEL,
optimization_mode: Annotated[
Optional[str], Field(description="Optimization mode: speed or balanced")
] = None,
history: Annotated[
Optional[list], Field(description="Conversation history")
] = None,
system_instructions: Annotated[
Optional[str], Field(description="Custom system instructions")
] = None,
stream: Annotated[bool, Field(description="Whether to stream responses")] = False,
) -> dict:
"""
Search using Perplexica's AI-powered search engine.
This tool provides access to Perplexica's search capabilities with various focus modes
for different types of searches including web search, academic search, writing assistance,
and specialized searches for platforms like YouTube and Reddit.
"""
# Fail fast if required models are absent
if (chat_model or DEFAULT_CHAT_MODEL) is None or (
embedding_model or DEFAULT_EMBEDDING_MODEL
) is None:
return {
"error": "Both chatModel and embeddingModel are required. Configure PERPLEXICA_* model env vars or pass them in the request."
}
return await perplexica_search(
query=query,
focus_mode=focus_mode,
chat_model=chat_model,
embedding_model=embedding_model,
optimization_mode=optimization_mode,
history=history,
system_instructions=system_instructions,
stream=stream,
)
def main():
"""Main entry point for the Perplexica MCP server."""
parser = argparse.ArgumentParser(description="Perplexica MCP Server")
parser.add_argument(
"transport", choices=["stdio", "sse", "http"], help="Transport type to use"
)
parser.add_argument(
"host",
nargs="?",
default="0.0.0.0",
help="Host to bind to for SSE/HTTP transports (default: 0.0.0.0)",
)
parser.add_argument(
"port",
nargs="?",
type=int,
default=3001,
help="Port for SSE/HTTP transports (default: 3001)",
)
args = parser.parse_args()
if args.transport == "stdio":
# Use FastMCP's stdio transport
mcp.run()
elif args.transport == "sse":
# Use FastMCP's SSE transport
print(
f"Starting Perplexica MCP server with SSE transport on {args.host}:{args.port}"
)
print(f"SSE endpoint: http://{args.host}:{args.port}/sse")
uvicorn.run(mcp.sse_app(), host=args.host, port=args.port)
elif args.transport == "http":
# Use FastMCP's Streamable HTTP transport
print(
f"Starting Perplexica MCP server with Streamable HTTP transport on {args.host}:{args.port}"
)
print(f"HTTP endpoint: http://{args.host}:{args.port}/mcp")
uvicorn.run(mcp.streamable_http_app(), host=args.host, port=args.port)
if __name__ == "__main__":
main()