Skip to main content
Glama

Perplexica MCP Server

server.py7.17 kB
#!/usr/bin/env python3 import argparse import os from typing import Annotated, Optional import httpx import uvicorn from dotenv import load_dotenv from mcp.server.fastmcp import FastMCP from pydantic import Field # Load environment variables from .env file load_dotenv() # Get the backend URL from environment variable or use default PERPLEXICA_BACKEND_URL = os.getenv( "PERPLEXICA_BACKEND_URL", "http://localhost:3000/api/search" ) PERPLEXICA_READ_TIMEOUT = int(os.getenv("PERPLEXICA_READ_TIMEOUT", 60)) # Default model configurations from environment variables DEFAULT_CHAT_MODEL = None if os.getenv("PERPLEXICA_CHAT_MODEL_PROVIDER") and os.getenv( "PERPLEXICA_CHAT_MODEL_NAME" ): DEFAULT_CHAT_MODEL = { "provider": os.getenv("PERPLEXICA_CHAT_MODEL_PROVIDER"), "name": os.getenv("PERPLEXICA_CHAT_MODEL_NAME"), } DEFAULT_EMBEDDING_MODEL = None if os.getenv("PERPLEXICA_EMBEDDING_MODEL_PROVIDER") and os.getenv( "PERPLEXICA_EMBEDDING_MODEL_NAME" ): DEFAULT_EMBEDDING_MODEL = { "provider": os.getenv("PERPLEXICA_EMBEDDING_MODEL_PROVIDER"), "name": os.getenv("PERPLEXICA_EMBEDDING_MODEL_NAME"), } # Create FastMCP server with default settings mcp = FastMCP("Perplexica", dependencies=["httpx", "mcp", "python-dotenv", "uvicorn"]) async def perplexica_search( query, focus_mode, chat_model=None, embedding_model=None, optimization_mode=None, history=None, system_instructions=None, stream=False, ) -> dict: """ Search using the Perplexica API Args: query (str): The search query chat_model (dict, optional): Chat model configuration with: provider: Provider name (e.g., openai, ollama) name: Model name (e.g., gpt-4o-mini) customOpenAIBaseURL: Optional custom OpenAI base URL customOpenAIKey: Optional custom OpenAI API key embedding_model (dict, optional): Embedding model configuration with: provider: Provider name (e.g., openai) name: Model name (e.g., text-embedding-3-small) customOpenAIBaseURL: Optional custom OpenAI base URL customOpenAIKey: Optional custom OpenAI API key focus_mode (str): Search focus mode (webSearch, academicSearch, etc.) optimization_mode (str, optional): Optimization mode (speed, balanced) history (list, optional): Conversation history system_instructions (str, optional): Custom system instructions stream (bool, optional): Whether to stream responses Returns: dict: Search results from Perplexica """ # Prepare the request payload payload = {"query": query, "focusMode": focus_mode} # Add optional parameters if provided if chat_model: payload["chatModel"] = chat_model if embedding_model: payload["embeddingModel"] = embedding_model if optimization_mode: payload["optimizationMode"] = optimization_mode else: payload["optimizationMode"] = "balanced" if history is not None: payload["history"] = history else: payload["history"] = [] if system_instructions: payload["systemInstructions"] = system_instructions if stream is not None: payload["stream"] = stream try: async with httpx.AsyncClient() as client: response = await client.post( PERPLEXICA_BACKEND_URL, json=payload, timeout=PERPLEXICA_READ_TIMEOUT ) response.raise_for_status() return response.json() except httpx.HTTPError as e: return {"error": f"HTTP error occurred: {str(e)}"} except Exception as e: return {"error": f"An error occurred: {str(e)}"} @mcp.tool() async def search( query: Annotated[str, Field(description="Search query")], focus_mode: Annotated[ str, Field( description="Focus mode: webSearch, academicSearch, writingAssistant, wolframAlphaSearch, youtubeSearch, redditSearch" ), ], chat_model: Annotated[ Optional[dict], Field(description="Chat model configuration") ] = DEFAULT_CHAT_MODEL, embedding_model: Annotated[ Optional[dict], Field(description="Embedding model configuration") ] = DEFAULT_EMBEDDING_MODEL, optimization_mode: Annotated[ Optional[str], Field(description="Optimization mode: speed or balanced") ] = None, history: Annotated[ Optional[list], Field(description="Conversation history") ] = None, system_instructions: Annotated[ Optional[str], Field(description="Custom system instructions") ] = None, stream: Annotated[bool, Field(description="Whether to stream responses")] = False, ) -> dict: """ Search using Perplexica's AI-powered search engine. This tool provides access to Perplexica's search capabilities with various focus modes for different types of searches including web search, academic search, writing assistance, and specialized searches for platforms like YouTube and Reddit. """ # Fail fast if required models are absent if (chat_model or DEFAULT_CHAT_MODEL) is None or ( embedding_model or DEFAULT_EMBEDDING_MODEL ) is None: return { "error": "Both chatModel and embeddingModel are required. Configure PERPLEXICA_* model env vars or pass them in the request." } return await perplexica_search( query=query, focus_mode=focus_mode, chat_model=chat_model, embedding_model=embedding_model, optimization_mode=optimization_mode, history=history, system_instructions=system_instructions, stream=stream, ) def main(): """Main entry point for the Perplexica MCP server.""" parser = argparse.ArgumentParser(description="Perplexica MCP Server") parser.add_argument( "transport", choices=["stdio", "sse", "http"], help="Transport type to use" ) parser.add_argument( "host", nargs="?", default="0.0.0.0", help="Host to bind to for SSE/HTTP transports (default: 0.0.0.0)", ) parser.add_argument( "port", nargs="?", type=int, default=3001, help="Port for SSE/HTTP transports (default: 3001)", ) args = parser.parse_args() if args.transport == "stdio": # Use FastMCP's stdio transport mcp.run() elif args.transport == "sse": # Use FastMCP's SSE transport print( f"Starting Perplexica MCP server with SSE transport on {args.host}:{args.port}" ) print(f"SSE endpoint: http://{args.host}:{args.port}/sse") uvicorn.run(mcp.sse_app(), host=args.host, port=args.port) elif args.transport == "http": # Use FastMCP's Streamable HTTP transport print( f"Starting Perplexica MCP server with Streamable HTTP transport on {args.host}:{args.port}" ) print(f"HTTP endpoint: http://{args.host}:{args.port}/mcp") uvicorn.run(mcp.streamable_http_app(), host=args.host, port=args.port) if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/thetom42/perplexica-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server