Skip to main content
Glama

describe-deployment

Retrieve detailed status and configuration information for a specific Kubernetes deployment to monitor its health and troubleshoot issues.

Instructions

Describe details of a Kubernetes deployment

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
deploymentYesThe name of the deployment to describe
namespaceNoThe namespace of the deployment (optional, defaults to current context namespace)

Implementation Reference

  • The execution handler for the 'describe-deployment' tool. It destructures the deployment name and optional namespace from arguments, constructs a kubectl describe command, executes it using execAsync, and returns the stdout as text content or a fallback message if no output.
    case "describe-deployment": { const { deployment, namespace } = args; const nsArg = namespace ? `-n ${namespace}` : ""; const cmd = `kubectl describe deployment ${deployment} ${nsArg}`; const { stdout } = await execAsync(cmd); return { content: [{ type: "text", text: stdout || "No deployment details found" }] }; }
  • The tool schema definition including name, description, and inputSchema for validation. This object is part of the static 'tools' array returned in response to ListTools requests, effectively registering the tool.
    name: "describe-deployment", description: "Describe details of a Kubernetes deployment", inputSchema: { type: "object", properties: { deployment: { type: "string", description: "The name of the deployment to describe" }, namespace: { type: "string", description: "The namespace of the deployment (optional, defaults to current context namespace)" } }, required: ["deployment"] }
  • server.js:1392-1394 (registration)
    The request handler for ListToolsRequestSchema that returns the static list of tools (including describe-deployment), which serves as the tool registration mechanism in MCP.
    server.setRequestHandler(ListToolsRequestSchema, async () => { return { tools }; });

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/thekaranpargaie/kube-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server