DEPLOYMENT.md•5.07 kB
# Deployment Guide
This guide covers deploying the AI Development Pipeline MCP Integration to various platforms.
## 🚀 Vercel Deployment (Recommended)
### Prerequisites
- Vercel account
- GitHub repository
- Environment variables configured
### Step-by-Step Deployment
1. **Install Vercel CLI:**
```bash
npm install -g vercel
```
2. **Login to Vercel:**
```bash
vercel login
```
3. **Deploy from local directory:**
```bash
vercel deploy
```
4. **Configure environment variables:**
```bash
vercel env add VERCEL_TOKEN
vercel env add AIRTABLE_API_KEY
vercel env add SQUARE_ACCESS_TOKEN
# Add all other environment variables
```
5. **Deploy to production:**
```bash
vercel deploy --prod
```
### Vercel Configuration
Create `vercel.json` in the root directory:
```json
{
"functions": {
"app/api/mcp/route.ts": {
"runtime": "@vercel/node"
}
},
"rewrites": [
{
"source": "/api/mcp",
"destination": "/app/api/mcp/route.ts"
}
]
}
```
## 🐳 Docker Deployment
### Dockerfile
Create a `Dockerfile` in the root directory:
```dockerfile
FROM node:18-alpine
WORKDIR /app
COPY package*.json ./
RUN npm ci --only=production
COPY . .
RUN npm run build
EXPOSE 3000
CMD ["npm", "start"]
```
### Docker Compose
Create `docker-compose.yml`:
```yaml
version: '3.8'
services:
mcp-server:
build: .
ports:
- "3000:3000"
environment:
- NODE_ENV=production
env_file:
- .env
```
### Build and Run
```bash
# Build the image
docker build -t ai-dev-pipeline-mcp .
# Run the container
docker run -p 3000:3000 --env-file .env ai-dev-pipeline-mcp
```
## ☁️ AWS Deployment
### AWS Lambda
1. **Install Serverless Framework:**
```bash
npm install -g serverless
```
2. **Create `serverless.yml`:**
```yaml
service: ai-dev-pipeline-mcp
provider:
name: aws
runtime: nodejs18.x
region: us-east-1
functions:
mcp:
handler: app/api/mcp/route.handler
events:
- http:
path: mcp
method: any
```
3. **Deploy:**
```bash
serverless deploy
```
## 🌐 Netlify Deployment
### Netlify Functions
1. **Create `netlify.toml`:**
```toml
[build]
functions = "netlify/functions"
[[redirects]]
from = "/api/mcp"
to = "/.netlify/functions/mcp"
status = 200
```
2. **Create function in `netlify/functions/mcp.js`:**
```javascript
const { handler } = require('../../app/api/mcp/route');
exports.handler = handler;
```
## 🔧 Environment Configuration
### Production Environment Variables
Ensure these are set in your deployment platform:
```env
NODE_ENV=production
VERCEL_TOKEN=your_production_token
AIRTABLE_API_KEY=your_production_key
SQUARE_ACCESS_TOKEN=your_production_token
ANALYTICS_SECRET=your_production_secret
NEXT_PUBLIC_APP_URL=https://your-domain.com
```
### Security Considerations
- Use different API keys for production
- Enable HTTPS/SSL certificates
- Configure CORS properly
- Set up monitoring and logging
- Use secrets management services
## 📊 Monitoring and Logging
### Vercel Analytics
Enable Vercel Analytics in your dashboard for:
- Request metrics
- Error tracking
- Performance monitoring
### Custom Logging
Add logging to your MCP tools:
```typescript
console.log(`[${new Date().toISOString()}] Tool executed: ${toolName}`);
```
### Health Checks
Create a health check endpoint:
```typescript
// In route.ts
if (request.url.includes('/health')) {
return new Response('OK', { status: 200 });
}
```
## 🔄 CI/CD Pipeline
### GitHub Actions
Create `.github/workflows/deploy.yml`:
```yaml
name: Deploy to Vercel
on:
push:
branches: [main]
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/setup-node@v2
with:
node-version: '18'
- run: npm ci
- run: npm run build
- uses: amondnet/vercel-action@v20
with:
vercel-token: ${{ secrets.VERCEL_TOKEN }}
vercel-org-id: ${{ secrets.ORG_ID }}
vercel-project-id: ${{ secrets.PROJECT_ID }}
```
## 🚨 Troubleshooting
### Common Deployment Issues
**Build failures:**
- Check Node.js version compatibility
- Verify all dependencies are listed in package.json
- Ensure TypeScript compiles without errors
**Runtime errors:**
- Check environment variables are set
- Verify API endpoints are accessible
- Review logs for specific error messages
**Performance issues:**
- Enable caching where appropriate
- Optimize bundle size
- Use CDN for static assets
### Getting Help
- Check platform-specific documentation
- Review deployment logs
- Test locally before deploying
- Use staging environments for testing
## 📈 Scaling Considerations
### Performance Optimization
- Implement caching strategies
- Use connection pooling for databases
- Optimize API response sizes
- Enable compression
### Load Balancing
- Use multiple deployment regions
- Implement health checks
- Configure auto-scaling
- Monitor resource usage
---
For more deployment options and advanced configurations, refer to the platform-specific documentation.