Skip to main content
Glama

FHIR MCP Server

by the-momentum
semantic_embedder.pyβ€’649 B
from llama_index.embeddings.huggingface import HuggingFaceEmbedding from app.schemas.vector_store_schemas import Embeddings class SemanticEmbedder: def __init__(self, model_name: str): self.model_name = model_name self._model: HuggingFaceEmbedding | None = None # Lazy loading of the model @property def model(self) -> HuggingFaceEmbedding: if self._model is None: self._model = HuggingFaceEmbedding(model_name=self.model_name) return self._model def embed_texts(self, texts: list[str]) -> Embeddings: return Embeddings(vectors=self.model.get_text_embedding_batch(texts))

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/the-momentum/fhir-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server