homeassistant-mcp
by tevonsb
- homeassistant-mcp
- src
- ai
- endpoints
import express from 'express';
import { z } from 'zod';
import { NLPProcessor } from '../nlp/processor.js';
import { AIRateLimit, AIContext, AIResponse, AIError, AIModel } from '../types/index.js';
import rateLimit from 'express-rate-limit';
const router = express.Router();
const nlpProcessor = new NLPProcessor();
// Rate limiting configuration
const rateLimitConfig: AIRateLimit = {
requests_per_minute: 100,
requests_per_hour: 1000,
concurrent_requests: 10,
model_specific_limits: {
claude: {
requests_per_minute: 100,
requests_per_hour: 1000
},
gpt4: {
requests_per_minute: 50,
requests_per_hour: 500
},
custom: {
requests_per_minute: 200,
requests_per_hour: 2000
}
}
};
// Request validation schemas
const interpretRequestSchema = z.object({
input: z.string(),
context: z.object({
user_id: z.string(),
session_id: z.string(),
timestamp: z.string(),
location: z.string(),
previous_actions: z.array(z.any()),
environment_state: z.record(z.any())
}),
model: z.enum(['claude', 'gpt4', 'custom']).optional()
});
// Rate limiters
const globalLimiter = rateLimit({
windowMs: 60 * 1000, // 1 minute
max: rateLimitConfig.requests_per_minute
});
const modelSpecificLimiter = (model: string) => rateLimit({
windowMs: 60 * 1000,
max: rateLimitConfig.model_specific_limits[model as AIModel]?.requests_per_minute ||
rateLimitConfig.requests_per_minute
});
// Error handler middleware
const errorHandler = (
error: Error,
req: express.Request,
res: express.Response,
next: express.NextFunction
) => {
const aiError: AIError = {
code: 'PROCESSING_ERROR',
message: error.message,
suggestion: 'Please try again with a different command format',
recovery_options: [
'Simplify your command',
'Use standard command patterns',
'Check device names and parameters'
],
context: req.body.context
};
res.status(500).json({ error: aiError });
};
// Endpoints
router.post(
'/interpret',
globalLimiter,
async (req: express.Request, res: express.Response, next: express.NextFunction) => {
try {
const { input, context, model = 'claude' } = interpretRequestSchema.parse(req.body);
// Apply model-specific rate limiting
modelSpecificLimiter(model)(req, res, async () => {
const { intent, confidence, error } = await nlpProcessor.processCommand(input, context);
if (error) {
return res.status(400).json({ error });
}
const isValid = await nlpProcessor.validateIntent(intent, confidence);
if (!isValid) {
const suggestions = await nlpProcessor.suggestCorrections(input, {
code: 'INVALID_INTENT',
message: 'Could not understand the command with high confidence',
suggestion: 'Please try rephrasing your command',
recovery_options: [],
context
});
return res.status(400).json({
error: {
code: 'INVALID_INTENT',
message: 'Could not understand the command with high confidence',
suggestion: 'Please try rephrasing your command',
recovery_options: suggestions,
context
}
});
}
const response: AIResponse = {
natural_language: `I'll ${intent.action} the ${intent.target.split('.').pop()}`,
structured_data: {
success: true,
action_taken: intent.action,
entities_affected: [intent.target],
state_changes: intent.parameters
},
next_suggestions: [
'Would you like to adjust any settings?',
'Should I perform this action in other rooms?',
'Would you like to schedule this action?'
],
confidence,
context
};
res.json(response);
});
} catch (error) {
next(error);
}
}
);
router.post(
'/execute',
globalLimiter,
async (req: express.Request, res: express.Response, next: express.NextFunction) => {
try {
const { intent, context, model = 'claude' } = req.body;
// Apply model-specific rate limiting
modelSpecificLimiter(model)(req, res, async () => {
// Execute the intent through Home Assistant
// This would integrate with your existing Home Assistant service
const response: AIResponse = {
natural_language: `Successfully executed ${intent.action} on ${intent.target}`,
structured_data: {
success: true,
action_taken: intent.action,
entities_affected: [intent.target],
state_changes: intent.parameters
},
next_suggestions: [
'Would you like to verify the state?',
'Should I perform any related actions?',
'Would you like to undo this action?'
],
confidence: { overall: 1, intent: 1, entities: 1, context: 1 },
context
};
res.json(response);
});
} catch (error) {
next(error);
}
}
);
router.get(
'/suggestions',
globalLimiter,
async (req: express.Request, res: express.Response, next: express.NextFunction) => {
try {
const { context, model = 'claude' } = req.body;
// Apply model-specific rate limiting
modelSpecificLimiter(model)(req, res, async () => {
// Generate context-aware suggestions
const suggestions = [
'Turn on the lights in the living room',
'Set the temperature to 72 degrees',
'Show me the current state of all devices',
'Start the evening routine'
];
res.json({ suggestions });
});
} catch (error) {
next(error);
}
}
);
// Apply error handler
router.use(errorHandler);
export default router;