Skip to main content
Glama
llm_router.py2.17 kB
# integration/llm_router.py import os from config.settings import GPT_API_KEY, GEMINI_API_KEY, CLAUDE_API_KEY, GROK_API_KEY import openai import google.generativeai as genai from anthropic import Anthropic # Configure OpenAI openai.api_key = GPT_API_KEY # Configure Gemini genai.configure(api_key=GEMINI_API_KEY) # Configure Claude anthropic_client = Anthropic(api_key=CLAUDE_API_KEY) def run_gpt(query): try: response = openai.chat.completions.create( model="gpt-3.5-turbo", # Change to "gpt-4" if needed messages=[{"role": "user", "content": query}] ) return {"model": "GPT", "response": response.choices[0].message.content} except Exception as e: return {"model": "GPT", "error": f"API call failed: {e}"} def run_gemini(query): try: model = genai.GenerativeModel('gemini-pro') response = model.generate_content(query) return {"model": "Gemini", "response": response.text} except Exception as e: return {"model": "Gemini", "error": f"API call failed: {e}"} def run_claude(query): try: message = anthropic_client.messages.create( model="claude-3-opus-20240229", max_tokens=1024, messages=[ {"role": "user", "content": query} ] ) return {"model": "Claude", "response": message.content[0].text} except Exception as e: return {"model": "Claude", "error": f"API call failed: {e}"} def run_grok(query): # NOTE: As of now, Grok/XAI doesn't publicly offer a Python SDK or API access. # You must skip this or use mock responses until official support is released. return {"model": "Grok", "response": f"Mock Grok response for: {query}"} def run_with_model(model_name, query): model_name = model_name.lower() if model_name == "gpt": return run_gpt(query) elif model_name == "gemini": return run_gemini(query) elif model_name == "claude": return run_claude(query) elif model_name == "grok": return run_grok(query) else: return {"error": f"Unsupported LLM model: {model_name}"}

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tensorwhiz141/MCP2'

If you have feedback or need assistance with the MCP directory API, please join our Discord server