Skip to main content
Glama
quickstart.md1.55 kB
*How to run the repo in the development mode?* 1.Clone the repository git clone https://github.com/<your-username>/blackhole_core_mcp.git cd blackhole_core_mcp 2.Create and activate a virtual environment python -m venv venv venv\Scripts\activate 3.Install required dependencies pip install -r requirements.txt 4.Create a .env file in the root directory MONGODB_URI=mongodb://localhost:27017 GMAIL_EMAIL=your-email@gmail.com GMAIL_APP_PASSWORD=your-app-password TIMEZONE=Asia/Kolkata *Example usage of using an agent* Example:Calendar Agent python blackhole_core/agents/calendar_agent.py *Where to add new agents?* blackhole_core/agents/ To create a new agent: Create a new file in blackhole_core/agents/, e.g. my_custom_agent.py Inherit from BaseMCPAgent Define capabilities and handler methods like handle_process, handle_info, etc. Register the agent using create_agent() or get_agent_info() at the bottom of the file. Use base_agent.py as a blueprint for standardization *How Agents are called by the MCP?* The Multi-Agent Control Protocol (MCP) enables agents to communicate with each other using standardized messages. How Calls Work: Each agent defines message_handlers mapped to methods like process, send_email, etc.The BaseMCPAgent handles routing internally: await agent.process_message(message) If agent_registry is set, agents can call other agents via: await self.call_agent("calendar_agent", "process", {"query": "..."}) This allows for building pipelines, multi-agent workflows, and chained reasoning across agents.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tensorwhiz141/MCP2'

If you have feedback or need assistance with the MCP directory API, please join our Discord server