Skip to main content
Glama
team-telnyx

Telnyx MCP Server

Official
by team-telnyx

create_embeddings

Generate vector embeddings for documents in a storage bucket to enable semantic search and AI analysis.

Instructions

Embed a bucket that containe files.

Args: bucket_name: Required. Bucket Name. The bucket must exist (string) document_chunk_size: Optional. Document Chunk Size (integer) document_chunk_overlap_size: Optional. Document Chunk Overlap Size (integer) embedding_model: Optional. Supported models (thenlper/gte-large, intfloat/multilingual-e5-large, sentence-transformers/all-mpnet-base-v2) to vectorize and embed documents. loader: Optional. (default, intercom) (string) Agent should prefer only rely on required fields unless user explicitly provides values for optional fields. Returns: Dict[str, Any]: Response data containing the embeddings

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
requestYes

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/team-telnyx/telnyx-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server