Skip to main content
Glama

Telnyx MCP Server

Official
by team-telnyx
embeddings.py2.59 kB
"""Embeddings related MCP tools.""" from typing import Any, Dict from ..mcp import mcp from ..telnyx.services.embeddings import EmbeddingsService from ..utils.error_handler import handle_telnyx_error from ..utils.logger import get_logger from ..utils.service import get_authenticated_service logger = get_logger(__name__) @mcp.tool() async def list_embedded_buckets() -> Dict[str, Any]: """List user embedded buckets. Returns: Dict[str, Any]: Response data eg: { "data": { "buckets": [ "string" ] } } """ try: service = get_authenticated_service(EmbeddingsService) return service.list_embedded_buckets() except Exception as e: logger.error(f"Error listing embedded buckets: {e}") raise handle_telnyx_error(e) @mcp.tool() async def embed_url(request: Dict[str, Any]) -> Dict[str, Any]: """Scrape and embed a given URL. For a given website, this tool will scrape the content of the pages and save the content in a new bucket. That bucket will be automatically embedded. Args: url: Required. URL to be scraped and embedded. Returns: Dict[str, Any]: Response data containing bucket information """ try: service = get_authenticated_service(EmbeddingsService) return service.embed_url(request) except Exception as e: logger.error(f"Error embedding URL: {e}") raise handle_telnyx_error(e) @mcp.tool() async def create_embeddings(request: Dict[str, Any]) -> Dict[str, Any]: """Embed a bucket that containe files. Args: bucket_name: Required. Bucket Name. The bucket must exist (string) document_chunk_size: Optional. Document Chunk Size (integer) document_chunk_overlap_size: Optional. Document Chunk Overlap Size (integer) embedding_model: Optional. Supported models (thenlper/gte-large, intfloat/multilingual-e5-large, sentence-transformers/all-mpnet-base-v2) to vectorize and embed documents. loader: Optional. (default, intercom) (string) Agent should prefer only rely on required fields unless user explicitly provides values for optional fields. Returns: Dict[str, Any]: Response data containing the embeddings """ try: service = get_authenticated_service(EmbeddingsService) return service.create_embeddings(request) except Exception as e: logger.error(f"Error creating embeddings: {e}") raise handle_telnyx_error(e)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/team-telnyx/telnyx-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server