Skip to main content
Glama

QuantConnect MCP Server

Dockerfile1.17 kB
# syntax=docker/dockerfile:1.9 FROM python:3.13-slim WORKDIR /app # Install system dependencies RUN apt-get update && apt-get install -y --no-install-recommends \ build-essential \ curl \ ca-certificates \ && rm -rf /var/lib/apt/lists/* # Install uv using the installer script ADD https://astral.sh/uv/install.sh /uv-installer.sh RUN sh /uv-installer.sh && mv /root/.local/bin/uv /usr/local/bin/uv && rm /uv-installer.sh # Configure uv for optimal Docker usage ENV UV_COMPILE_BYTECODE=1 \ UV_LINK_MODE=copy \ UV_PYTHON_DOWNLOADS=never \ PYTHONUNBUFFERED=1 # Create non-root user RUN groupadd -r app && useradd -r -d /app -g app app # Copy project files for dependency installation (better caching) COPY pyproject.toml uv.lock ./ # Install dependencies first (better layer caching) RUN --mount=type=cache,target=/root/.cache/uv \ uv sync --frozen --no-dev # Copy application code COPY quantconnect_mcp/ ./quantconnect_mcp/ # Change ownership to app user RUN chown -R app:app /app # Switch to non-root user USER app ENV MCP_TRANSPORT=streamable-http # Run the application CMD ["uv", "run", "-m", "quantconnect_mcp.main"]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/taylorwilsdon/quantconnect-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server