Skip to main content
Glama

Google Workspace MCP Server - Control Gmail, Calendar, Docs, Sheets, Slides, Chat, Forms & Drive

validation_manager.py15.7 kB
""" Validation Manager This module provides centralized validation logic for Google Docs operations, extracting validation patterns from individual tool functions. """ import logging from typing import Dict, Any, List, Tuple, Optional logger = logging.getLogger(__name__) class ValidationManager: """ Centralized validation manager for Google Docs operations. Provides consistent validation patterns and error messages across all document operations, reducing code duplication and improving error message quality. """ def __init__(self): """Initialize the validation manager.""" self.validation_rules = self._setup_validation_rules() def _setup_validation_rules(self) -> Dict[str, Any]: """Setup validation rules and constraints.""" return { 'table_max_rows': 1000, 'table_max_columns': 20, 'document_id_pattern': r'^[a-zA-Z0-9-_]+$', 'max_text_length': 1000000, # 1MB text limit 'font_size_range': (1, 400), # Google Docs font size limits 'valid_header_footer_types': ["DEFAULT", "FIRST_PAGE_ONLY", "EVEN_PAGE"], 'valid_section_types': ["header", "footer"], 'valid_list_types': ["UNORDERED", "ORDERED"], 'valid_element_types': ["table", "list", "page_break"] } def validate_document_id(self, document_id: str) -> Tuple[bool, str]: """ Validate Google Docs document ID format. Args: document_id: Document ID to validate Returns: Tuple of (is_valid, error_message) """ if not document_id: return False, "Document ID cannot be empty" if not isinstance(document_id, str): return False, f"Document ID must be a string, got {type(document_id).__name__}" # Basic length check (Google Docs IDs are typically 40+ characters) if len(document_id) < 20: return False, "Document ID appears too short to be valid" return True, "" def validate_table_data(self, table_data: List[List[str]]) -> Tuple[bool, str]: """ Comprehensive validation for table data format. This extracts and centralizes table validation logic from multiple functions. Args: table_data: 2D array of data to validate Returns: Tuple of (is_valid, detailed_error_message) """ if not table_data: return False, "Table data cannot be empty. Required format: [['col1', 'col2'], ['row1col1', 'row1col2']]" if not isinstance(table_data, list): return False, f"Table data must be a list, got {type(table_data).__name__}. Required format: [['col1', 'col2'], ['row1col1', 'row1col2']]" # Check if it's a 2D list if not all(isinstance(row, list) for row in table_data): non_list_rows = [i for i, row in enumerate(table_data) if not isinstance(row, list)] return False, f"All rows must be lists. Rows {non_list_rows} are not lists. Required format: [['col1', 'col2'], ['row1col1', 'row1col2']]" # Check for empty rows if any(len(row) == 0 for row in table_data): empty_rows = [i for i, row in enumerate(table_data) if len(row) == 0] return False, f"Rows cannot be empty. Empty rows found at indices: {empty_rows}" # Check column consistency col_counts = [len(row) for row in table_data] if len(set(col_counts)) > 1: return False, f"All rows must have the same number of columns. Found column counts: {col_counts}. Fix your data structure." rows = len(table_data) cols = col_counts[0] # Check dimension limits if rows > self.validation_rules['table_max_rows']: return False, f"Too many rows ({rows}). Maximum allowed: {self.validation_rules['table_max_rows']}" if cols > self.validation_rules['table_max_columns']: return False, f"Too many columns ({cols}). Maximum allowed: {self.validation_rules['table_max_columns']}" # Check cell content types for row_idx, row in enumerate(table_data): for col_idx, cell in enumerate(row): if cell is None: return False, f"Cell ({row_idx},{col_idx}) is None. All cells must be strings, use empty string '' for empty cells." if not isinstance(cell, str): return False, f"Cell ({row_idx},{col_idx}) is {type(cell).__name__}, not string. All cells must be strings. Value: {repr(cell)}" return True, f"Valid table data: {rows}×{cols} table format" def validate_text_formatting_params( self, bold: Optional[bool] = None, italic: Optional[bool] = None, underline: Optional[bool] = None, font_size: Optional[int] = None, font_family: Optional[str] = None ) -> Tuple[bool, str]: """ Validate text formatting parameters. Args: bold: Bold setting italic: Italic setting underline: Underline setting font_size: Font size in points font_family: Font family name Returns: Tuple of (is_valid, error_message) """ # Check if at least one formatting option is provided formatting_params = [bold, italic, underline, font_size, font_family] if all(param is None for param in formatting_params): return False, "At least one formatting parameter must be provided (bold, italic, underline, font_size, or font_family)" # Validate boolean parameters for param, name in [(bold, 'bold'), (italic, 'italic'), (underline, 'underline')]: if param is not None and not isinstance(param, bool): return False, f"{name} parameter must be boolean (True/False), got {type(param).__name__}" # Validate font size if font_size is not None: if not isinstance(font_size, int): return False, f"font_size must be an integer, got {type(font_size).__name__}" min_size, max_size = self.validation_rules['font_size_range'] if not (min_size <= font_size <= max_size): return False, f"font_size must be between {min_size} and {max_size} points, got {font_size}" # Validate font family if font_family is not None: if not isinstance(font_family, str): return False, f"font_family must be a string, got {type(font_family).__name__}" if not font_family.strip(): return False, "font_family cannot be empty" return True, "" def validate_index(self, index: int, context: str = "Index") -> Tuple[bool, str]: """ Validate a single document index. Args: index: Index to validate context: Context description for error messages Returns: Tuple of (is_valid, error_message) """ if not isinstance(index, int): return False, f"{context} must be an integer, got {type(index).__name__}" if index < 0: return False, f"{context} {index} is negative. You MUST call inspect_doc_structure first to get the proper insertion index." return True, "" def validate_index_range( self, start_index: int, end_index: Optional[int] = None, document_length: Optional[int] = None ) -> Tuple[bool, str]: """ Validate document index ranges. Args: start_index: Starting index end_index: Ending index (optional) document_length: Total document length for bounds checking Returns: Tuple of (is_valid, error_message) """ # Validate start_index if not isinstance(start_index, int): return False, f"start_index must be an integer, got {type(start_index).__name__}" if start_index < 0: return False, f"start_index cannot be negative, got {start_index}" # Validate end_index if provided if end_index is not None: if not isinstance(end_index, int): return False, f"end_index must be an integer, got {type(end_index).__name__}" if end_index <= start_index: return False, f"end_index ({end_index}) must be greater than start_index ({start_index})" # Validate against document length if provided if document_length is not None: if start_index >= document_length: return False, f"start_index ({start_index}) exceeds document length ({document_length})" if end_index is not None and end_index > document_length: return False, f"end_index ({end_index}) exceeds document length ({document_length})" return True, "" def validate_element_insertion_params( self, element_type: str, index: int, **kwargs ) -> Tuple[bool, str]: """ Validate parameters for element insertion. Args: element_type: Type of element to insert index: Insertion index **kwargs: Additional parameters specific to element type Returns: Tuple of (is_valid, error_message) """ # Validate element type if element_type not in self.validation_rules['valid_element_types']: valid_types = ', '.join(self.validation_rules['valid_element_types']) return False, f"Invalid element_type '{element_type}'. Must be one of: {valid_types}" # Validate index if not isinstance(index, int) or index < 0: return False, f"index must be a non-negative integer, got {index}" # Validate element-specific parameters if element_type == "table": rows = kwargs.get('rows') columns = kwargs.get('columns') if not rows or not columns: return False, "Table insertion requires 'rows' and 'columns' parameters" if not isinstance(rows, int) or not isinstance(columns, int): return False, "Table rows and columns must be integers" if rows <= 0 or columns <= 0: return False, "Table rows and columns must be positive integers" if rows > self.validation_rules['table_max_rows']: return False, f"Too many rows ({rows}). Maximum: {self.validation_rules['table_max_rows']}" if columns > self.validation_rules['table_max_columns']: return False, f"Too many columns ({columns}). Maximum: {self.validation_rules['table_max_columns']}" elif element_type == "list": list_type = kwargs.get('list_type') if not list_type: return False, "List insertion requires 'list_type' parameter" if list_type not in self.validation_rules['valid_list_types']: valid_types = ', '.join(self.validation_rules['valid_list_types']) return False, f"Invalid list_type '{list_type}'. Must be one of: {valid_types}" return True, "" def validate_header_footer_params( self, section_type: str, header_footer_type: str = "DEFAULT" ) -> Tuple[bool, str]: """ Validate header/footer operation parameters. Args: section_type: Type of section ("header" or "footer") header_footer_type: Specific header/footer type Returns: Tuple of (is_valid, error_message) """ if section_type not in self.validation_rules['valid_section_types']: valid_types = ', '.join(self.validation_rules['valid_section_types']) return False, f"section_type must be one of: {valid_types}, got '{section_type}'" if header_footer_type not in self.validation_rules['valid_header_footer_types']: valid_types = ', '.join(self.validation_rules['valid_header_footer_types']) return False, f"header_footer_type must be one of: {valid_types}, got '{header_footer_type}'" return True, "" def validate_batch_operations(self, operations: List[Dict[str, Any]]) -> Tuple[bool, str]: """ Validate a list of batch operations. Args: operations: List of operation dictionaries Returns: Tuple of (is_valid, error_message) """ if not operations: return False, "Operations list cannot be empty" if not isinstance(operations, list): return False, f"Operations must be a list, got {type(operations).__name__}" # Validate each operation for i, op in enumerate(operations): if not isinstance(op, dict): return False, f"Operation {i+1} must be a dictionary, got {type(op).__name__}" if 'type' not in op: return False, f"Operation {i+1} missing required 'type' field" # Validate operation-specific fields using existing validation logic # This would call the validate_operation function from docs_helpers # but we're centralizing the logic here return True, "" def validate_text_content(self, text: str, max_length: Optional[int] = None) -> Tuple[bool, str]: """ Validate text content for insertion. Args: text: Text to validate max_length: Maximum allowed length Returns: Tuple of (is_valid, error_message) """ if not isinstance(text, str): return False, f"Text must be a string, got {type(text).__name__}" max_len = max_length or self.validation_rules['max_text_length'] if len(text) > max_len: return False, f"Text too long ({len(text)} characters). Maximum: {max_len}" return True, "" def get_validation_summary(self) -> Dict[str, Any]: """ Get a summary of all validation rules and constraints. Returns: Dictionary containing validation rules """ return { 'constraints': self.validation_rules.copy(), 'supported_operations': { 'table_operations': ['create_table', 'populate_table'], 'text_operations': ['insert_text', 'format_text', 'find_replace'], 'element_operations': ['insert_table', 'insert_list', 'insert_page_break'], 'header_footer_operations': ['update_header', 'update_footer'] }, 'data_formats': { 'table_data': "2D list of strings: [['col1', 'col2'], ['row1col1', 'row1col2']]", 'text_formatting': "Optional boolean/integer parameters for styling", 'document_indices': "Non-negative integers for position specification" } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/taylorwilsdon/google_workspace_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server